рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вычисление обратной матрицы методом исключения Гаусса

Вычисление обратной матрицы методом исключения Гаусса - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений Обратной Матрицей К Матрице A Называется Матрица A-...

Обратной матрицей к матрице A называется матрица A-1, для которой выполнено соотношение:

A A-1 = E, (3.18)

где E - единичная матрица:

1 0 0 … 0

0 1 0 … 0

E = 0 0 1 … 0 . (3.19)

0 0 0 … 1

Квадратная матрица A называется невырожденной, если det A 0. Всякая невырожденная матрица имеет обратную матрицу.

Вычисление обратной матрицы можно свести к рассмотренной выше задаче решения системы уравнений.

Пусть A - квадратная невырожденная матрица порядка n:

a11 a12 a13 … a1n

a21 a22 a23 … a2n

A = a31 a32 a33 … a3n

an1 an2 an3 … ann

и A-1 - ее обратная матрица:

x11 x12 x13 … x1n

x21 x22 x23 … x2n

A-1 = x31 x32 x33 … x3n

xn1 xn2 xn3 … xnn

Используя соотношения (3.18), (3. 19) и правило умножения матриц, получим систему из n2 уравнений с n2 переменными xij, i, j = 1, 2, …, n. Чтобы получить первый столбец матрицы E, нужно почленно умножить каждую строку матрицы A на первый столбец матрицы A-1 и приравнять полученное произведение соответствующему элементу первого столбца матрицы E. В результате получим систему уравнений:

a11x11 + a12 x21 + a13x31 + … + a1nxn1 = 1

a21x11 + a22 x21 + a23x31 + … + a2nxn1 = 0

a31x11 + a32 x21 + a33x31 + … + a3nxn1 = 0 (3.20)

an1x11 + an2 x21 + an3x31 + … + annxn1 = 0

Аналогично, чтобы получить второй столбец матрицы E, нужно почленно умножить каждую строку матрицы A на второй столбец матрицы A-1 и приравнять полученное произведение соответствующему элементу второго столбца матрицы E. В результате получим систему уравнений:

a11x12 + a12 x22 + a13x32 + … + a1nxn2 = 0

a21x12 + a22 x22 + a23x32 + … + a2nxn2 = 1

a31x12 + a32 x22 + a33x32 + … + a3nxn2 = 0 (3.21)

an1x12 + an2 x22 + an3x32 + … + annxn2 = 0

и т. д.

Всего таким образом получим n систем по n уравнений в каждой системе, причем все эти системы имеют одну и ту же матрицу A и отличаются только свободными членами. Приведение матрицы A к треугольной по формулам (3.7) делается при этом только один раз. Затем по последней из формул (3.7) преобразуются все правые части, и для каждой правой части делается обратный ход.

 

Вычислим обратную матрицу A-1 для матрицы

A = 1.8 -3.8 0.7 -3.7

0.7 2.1 -2.6 -2.8

7.3 8.1 1.7 -4.9

1.9 -4.3 -4.3 -4.7

По формулам (3.7) за три шага прямого хода преобразуем матрицу A в треугольную матрицу

1.8 -3.8 0.7 -3.7

0 3.57778 -2.87222 -1.36111

0 0 17.73577 19.04992

0 0 0 5.40155

Далее, применим процедуру обратного хода четыре раза для столбцов свободных членов, преобразованных по формулам (3.7) из столбцов единичной матрицы:

1 0 0 0

0 1 0 0

0 , 0 , 1 , 0

0 0 0 1

Каждый раз будем получать столбцы матрицы A-1. Опустив промежуточные вычисления, приведем окончательный вид матрицы A-1:

-0.21121 -0.46003 0.16248 0.26956

-0.03533 0.16873 0.01573 -0.08920

0.23030 0.04607 -0.00944 -0.19885 .

-0.29316 -0.38837 0.06128 0.18513

– Конец работы –

Эта тема принадлежит разделу:

Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений

Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вычисление обратной матрицы методом исключения Гаусса

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Корректность
Определим вначале понятие устойчивости решения. Решение задачи y* называется устойчивым по исходным данным x*, если оно зависит от исходных данны

Вычислительные методы
Под вычислительными методами будем понимать методы, которые используются в вычислительной математике для преобразования задач к виду, удобному для реализации на ЭВМ. Подробнее с различными к

ЛЕКЦИЯ 9
Тема: Элементы теории погрешностей Определение. Пусть u и — точное и приближенное значение некоторой величины соответственно. Тогда абсолютной погрешностью п

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения.
Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке [a0, b0], т. е. x*[a0, b0], так, что f(x

Пусть уравнение (2.1) можно заменить эквивалентным ему уравнением
x = (x). (2.4) Например, уравнение - 0.5 = 0 можно заменить эквивалентным ему уравнением x = 0.5sinx. Выберем каким-либо образом начальное прибл

Метод Ньютона (метод касательных)
вать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство |xn - xn -

Метод ложного положения
Рассмотрим еще одну модификацию метода Ньютона. Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из ко

Постановка задачи
Требуется найти решение системы линейных уравнений: a11x1 + a12 x2 + a13x3

Метод исключения Гаусса с выбором главного элемента по столбцу
Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной ди

Вычисление определителя методом исключения Гаусса
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратн

Метод простой итерации Якоби
Метод Гаусса обладает довольно сложной вычислительной схемой. Кроме того, при вычислениях накапливается ошибка округления, что может привести к недостаточно точному результату. Рассмотрим метод про

Метод Зейделя
Модификацией метода простых итераций Якоби можно считать метод Зейделя. В методе Якоби на (k+1)-ой итерации значения x, i = 1, 2, …, n. вычисляются подстановкой

Постановка задачи
Задача приближения (аппроксимации) функций заключается в том, чтобы для данной функции построить другую, отличную от нее функцию, значения которой достаточно близки к значениям данной функции. Така

Приближение функции многочленами Тейлора
Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:

Интерполяция функции многочленами Лагранжа
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узл

Аппроксимация функций. Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi

Постановка задачи численного интегрирования
Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона - Лейбница: I == F(b) - F(a), (5.1) где

Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x

Метод трапеций
Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим

Метод Симпсона (метод парабол)
Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n - 1, параболой, проведенной через точки (xi

Правило Рунге практической оценки погрешности
Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:

Постановка задачи Коши
Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: y (t) = f(t, y(t)). (6.1) Решением уравнения (6.1) являе

Метод Эйлера
Простейшим методом решения задачи Коши является метод Эйлера. Будем решать задачу Коши y (t) = f(t, y(t)). y(t0

Модифицированные методы Эйлера
Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции y в точках t = ti + с помощ

Метод Рунге - Кутта
Метод Рунге - Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге - Кутта. Рассмотрим задачу Кош

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги