рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЛЕКЦИЯ 9

ЛЕКЦИЯ 9 - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений Тема: Элементы Теории Погрешностей Определение. Пуст...

Тема: Элементы теории погрешностей

Определение. Пусть u и — точное и приближенное значение некоторой величины соответственно. Тогда абсолютной погрешностью приближения u* называется величина , удовлетворяющая неравенству

Определение. Относительной погрешностью называется величина , удовлетворяющая неравенству

 

Обычно используется запись

Определение. Пусть искомая величина u является функцией параметров u* — приближенное значение u. Тогда предельной абсолютной погрешностью называется величина

 

Предельной относительной погрешностью называется величина

Пусть — приближенное значение Предполагаем, что u — непрерывно дифференцируемая функция своих аргументов. Тогда, по формуле Лагранжа,

 

где

Отсюда где

Можно показать, что при малых это оценка не может быть существенно улучшена. На практике иногда пользуются грубой (линейной) оценкой

где

Несложно показать, что
а) предельная погрешность суммы или разности равна сумме или разности предельных погрешностей.
в) Предельная относительная погрешность произведения или частного приближенного равна сумме предельных относительных погрешностей

Погрешность метода
Оценим погрешность при вычислении первой производной при помощи соотношения :

 

где O(h) есть погрешность метода. В данном случае под погрешностью метода понимается абсолютная величина разности , которая составляет O(h) (более точно , где ).

Если же взять другой метод вычисления производной , то получим, что его погрешность составляет O(h2), это оказывается существенным при малых h. Однако уменьшать h до бесконечности не имеет смысла, что видно из следующего примера. Реальная погрешность при вычислении первой производной будет


поскольку погрешность за счет машинного округления составит .
В этом случае можно найти оптимальный шаг h. Будем считать полную погрешность в вычислении производной Δ функцией шага h. Отыщем минимум этой функции. Приравняв производную к нулю, получим оптимальный шаг численного дифференцирования

 

Выбирать значение h меньше оптимального не имеет смысла, так как при дальнейшем уменьшении шага суммарная погрешность начинает расти из-за возрастания вклада ошибок округления.
Задача численного дифференцирования

Рассмотрим задачу приближенного вычисления приближенного значения производной подробнее.

Пусть задана таблица значений xi. В дальнейшем совокупность точек на отрезке, котором проводятся вычисления, иногда будут называться сеткой, каждое значение xiузлом сетки. Пусть сетка равномерная, и расстояние между узлами равно — шагу сетки. Пусть узлы сетки пронумерованы в порядке возрастания, т.е.

,
Пусть — функция, определенная в узлах сетки. Такие функции будут называться табличными, или сеточными функциями. Считаем, кроме того, что рассматриваемая сеточная функция есть проекция (или ограничение) на сетку некоторой гладкой нужное число раз непрерывно дифференцируемой функции f(x). По определению производной

 

тогда, если шаг сетки достаточно мал, по аналогии можно написать формулу в конечных разностях, дающую приближенное значение производной сеточной функции:
(1.1)
Если параметр достаточно мал, то можно считать полученное значение производной достаточно точным. Погрешность формулы (1.1) оценена в пункте 1.4. Как показано выше, при уменьшении шага сетки h ошибка будет уменьшаться, но при некотором значении ошибка может возрасти до бесконечности. При оценке погрешности метода обычно считается, что все вычисления были точными. Но существует ошибка округления. При оценке ее большую роль играет машинный ε — мера относительной погрешности машинного округления, возникающей из-за конечной разрядности мантиссы при работе с числами в формате с плавающей точкой. Напомним, что по определению машинным ε называют наибольшее из чисел, для которых в рамках используемой системы вычислений, выполнено 1 + ε = 1. Тогда абсолютная погрешность при вычислении значения функции (или представлении табличной функции) есть Максимальный вклад погрешностей округления при вычислении производной по формуле (1.1) будет тогда, когда члены в знаменателе (1.1) имеют ошибки разных знаков.
Пусть максимум ищется на отрезке, на котором вычисляются значения производных. Тогда суммарная ошибка, состоящая из погрешности метода и погрешности округления, есть
Для вычисления оптимального шага численного дифференцирования найдем минимум суммарной ошибки, как функции шага сетки откуда
Если требуется повысить точность вычисления производных, необходимо воспользоваться формулами, имеющими меньшие погрешности метода. Так, из курсов математического анализа известно, что

 

По аналогии напишем конечно-разностную формулу

(1.2)

(1.2) — формула с центральной разностью. Исследуем ее на аппроксимацию, т.е. оценим погрешность метода. Предположим, что функция, которую спроектировали на сетку, трижды непрерывно дифференцируема, тогда

 

 

Погрешность метода определяется 3-й производной функции. Введем тогда суммарная погрешность при вычислении по формуле с центральной разностью есть

для вычисления оптимального шага, находя минимум погрешности, как функции шага сетки, имеем откуда


Для более точного вычисления производной, необходимо использовать, разложение более высокого порядка, шаг будет увеличиваться.

Формула (1.1) — двухточечная, (1.2) — трехточечная: при вычислении производной используются точки (узлы) (узел входит с нулевым коэффициентом), , — совокупность узлов, участвующих в каждом вычислении производной, в дальнейшем будем иногда называть сеточным шаблоном.
Введем на рассматриваемом отрезке шаблон из нескольких точек.
Считаем, что сетка равномерная — шаг сетки постоянный, расстояния между любыми двумя соседними узлами равны. Используем для вычисления значения первой производной следующую приближенную (конечноразностную) формулу:

(1.3)

шаблон включает l точек слева от рассматриваемой точки xj и m справа. Коэффициенты α — неопределенные коэффициенты. Формула дифференцирования может быть и односторонней — либо l, либо m могут равняться нулю. В первом случае иногда называют (на наш взгляд, не слишком удачно) такую приближенную формулу формулой дифференцирования вперед, во втором — формулой дифференцирования назад. Потребуем, чтобы (1.3) приближала первую производную с точностью Используем разложения в ряд Тейлора в окрестности точки xj. Подставляя их в (1.3), получим

 

Потребуем выполнение условий:
…, … (1.4)

Получаем систему линейных алгебраических уравнений для неопределенных коэффициентов α (1.4). Матрица этой системы есть

 

Вектор правых частей (0, 1, 0, …,0)T.

Определитель данной матрицы — детерминант Вандермонда. Из курса линейной алгебры следует, что он не равен нулю. Тогда существует единственный набор коэффициентов α, который позволяет найти на шаблоне из (1 + l + m) точек значение первой производной с точностью
Для нахождения второй производной можно использовать ту же самую формулу (1.3) с небольшой модификацией

только теперь Очевидно, что и данная система уравнений для нахождения неопределенных коэффициентов имеет единственное решение. Для получения с той же точностью приближенных значений производных до порядка l + m включительно с точностью модификации формулы (1.3) и условий (1.4) очевидны, набор неопределенных коэффициентов находится единственным образом.

Таким образом, доказано следующее утверждение. На сеточном шаблоне, включающем в себя N + 1 точку, с помощью метода неопределенных коэффициентов всегда можно построить единственную формулу для вычисления производной от первого до N порядка включительно с точностью .
Утверждение доказано для равномерной сетки, но на случай произвольных расстояний между сеточными узлами обобщение проводится легко.
Так как на практике вычисления проводятся с конечной длиной мантиссы, то получить нулевую ошибку невозможно. t;

Таким образом, решение I* устойчиво. Все три условия корректности задачи выполнены.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений

Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЛЕКЦИЯ 9

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Корректность
Определим вначале понятие устойчивости решения. Решение задачи y* называется устойчивым по исходным данным x*, если оно зависит от исходных данны

Вычислительные методы
Под вычислительными методами будем понимать методы, которые используются в вычислительной математике для преобразования задач к виду, удобному для реализации на ЭВМ. Подробнее с различными к

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения.
Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке [a0, b0], т. е. x*[a0, b0], так, что f(x

Пусть уравнение (2.1) можно заменить эквивалентным ему уравнением
x = (x). (2.4) Например, уравнение - 0.5 = 0 можно заменить эквивалентным ему уравнением x = 0.5sinx. Выберем каким-либо образом начальное прибл

Метод Ньютона (метод касательных)
вать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство |xn - xn -

Метод ложного положения
Рассмотрим еще одну модификацию метода Ньютона. Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из ко

Постановка задачи
Требуется найти решение системы линейных уравнений: a11x1 + a12 x2 + a13x3

Метод исключения Гаусса с выбором главного элемента по столбцу
Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной ди

Вычисление определителя методом исключения Гаусса
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратн

Вычисление обратной матрицы методом исключения Гаусса
Обратной матрицей к матрице A называется матрица A-1, для которой выполнено соотношение: A A-1 = E, (3.18) где

Метод простой итерации Якоби
Метод Гаусса обладает довольно сложной вычислительной схемой. Кроме того, при вычислениях накапливается ошибка округления, что может привести к недостаточно точному результату. Рассмотрим метод про

Метод Зейделя
Модификацией метода простых итераций Якоби можно считать метод Зейделя. В методе Якоби на (k+1)-ой итерации значения x, i = 1, 2, …, n. вычисляются подстановкой

Постановка задачи
Задача приближения (аппроксимации) функций заключается в том, чтобы для данной функции построить другую, отличную от нее функцию, значения которой достаточно близки к значениям данной функции. Така

Приближение функции многочленами Тейлора
Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:

Интерполяция функции многочленами Лагранжа
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узл

Аппроксимация функций. Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi

Постановка задачи численного интегрирования
Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона - Лейбница: I == F(b) - F(a), (5.1) где

Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x

Метод трапеций
Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим

Метод Симпсона (метод парабол)
Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n - 1, параболой, проведенной через точки (xi

Правило Рунге практической оценки погрешности
Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:

Постановка задачи Коши
Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: y (t) = f(t, y(t)). (6.1) Решением уравнения (6.1) являе

Метод Эйлера
Простейшим методом решения задачи Коши является метод Эйлера. Будем решать задачу Коши y (t) = f(t, y(t)). y(t0

Модифицированные методы Эйлера
Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции y в точках t = ti + с помощ

Метод Рунге - Кутта
Метод Рунге - Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге - Кутта. Рассмотрим задачу Кош

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги