рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Приемы, сходные с определением понятий

Приемы, сходные с определением понятий - Конспект, раздел Философия, Конспект книги Предмет и значение логики Всем Понятиям Определение Дать Невозможно (К Тому Же Этом Нет Необходимости),...

Всем понятиям определение дать невозможно (к тому же этом нет необходимости), поэтому в науке и в процессе обучения используются другие способы введения понятий – приёмы, сходные с определением: описание, характеристика, разъяснение посредством примера и др.

Описание состоит в перечислении внешних черт предмета с целью нестрогого отличения его от сходных сним предметов. Описание дает чувственно-наглядный образ предмета, который человек может составить с помощью творческого или воспроизводящего представления. Описание включает как существенные, так и несущественные признаки. Приведем возможное описан картины Рафаэля Санти “Сикстинская мадонна”: “Мадонна с сыном на руках, легко ступая по облакам, несет его людям. В ее лице -

 

предвидение неизбежной гибели сына и в то же время готов­ность принести его в жертву во имя блага человечества. Взгляд младенца не по-детски серьезен. Сикстинская мадонна - оли­цетворение тревоги и скорби. Ее образ обладает большой нрав­ственной силой”.

Описания широко применяются в различных жанрах художест­венной литературы (например, описание Л. Н. Толстым внешности Анны Карениной, описание Н. В. Гоголем внешнего облика Плюш­кина, Собакевича и других литературных героев, описание Стефа­ном Цвейгом облика Оноре Бальзака, облика его отца и других людей, описание пейзажей, деревьев, птиц и т. д.), в исторической литературе (описание Куликовской битвы, описание обликов воена­чальников, монархов и других личностей); в специальной техничес­кой литературе приводятся описания внешнего вида машин, в том числе ЭВМ, описания конструкций различных предметов (напри­мер, замков, электрохолодильников, электронагревательных прибо­ров и др.). Часто даются описания растений, животных, полезных ископаемых.

При розыске преступников дается описание их внешности, и в первую очередь особых примет, чтобы люди могли их опоз­нать и сообщить об их месте нахождения.

Характеристика дает перечисление лишь некоторых внутрен­них существенных свойств человека, явления, предмета, а не опи­сание его внешнего вида. Иногда она дается путем указания од­ного признака. К. Маркс называл Аристотеля “величайшим мыс­лителем древности”, а Луначарский характеризовал Клима Самгина (героя романа М. Горького) как “микроскопическую индиви­дуальность на больших каблуках самомнения”. К. Д. Ушинский писал: “Леность - это отвращение человека от усилий”.

В книге рекордов Гиннеса (1988 г.) даны такие характеристи­ки: “Сергей Бубка (СССР). Первый прыгун с шестом, преодолев­ший шестиметровый рубеж”; “Сэр Эдмунд Хиллари (Новая Зе­ландия). Его выдающееся достижение заключается в том, что он первым покорил Эверест”; “Самая дорогая картина “Подсолну­хи”, одна из серии 7 картин Винсента ван Гога, была продана на аукционе Кристи 30 марта 1987 г. в Лондоне за 22 500 000 ф. ст.”'.

_____________________________

'Книга рекордов Гиннеса (1988). М., 1989. С. 6, 87.

 

Характеристика литературных героев дается путем перечисления их деловых качеств, моральных, общественно-политических взглядов, а также соответствующих действий, черт характера и темперамента, целей, которые они ставят перед собой. Характеристика этих персонажей позволяет четко, метко подметить типичные черты того или иного собирательного образа.

Велика роль труда в жизни человека. Необходимый для существования человеческого общества, он не менее важен для становления самой личности, ибо формирует такие качества как самостоятельность, инициативность, деловитость, твердость характера. Известный русский педагог К. Д. Ушинский дал труду такую характеристику: “Без личного труда человек не может идти вперед; не может оставаться на одном месте, но должен идти назад. Тело, сердце и ум человека требуют труда, и это требование так настоятельно, что если, почему бы то ни было, у человека не окажется своего личного труда в жизни, тогда он теряет настоящую дорогу и перед ним открываются две другие, обе одинаково гибельные: дорога неутолимого недовольства жизнью, мрачной апатии и бездонной скуки или дорога добровольного незаметного самоуничтожения, п которой человек быстро спускается до детских прихотей ил” скотских наслаждений. На той и на другой - дороге смерть овладевает человеком заживо, потому что труд - личный, свободный труд - и есть жизнь”'.

Часто применяется сочетание описания и характеристики. Оно используется при изучении химии, биологии, географии, истории и других наук. Например: “Нефть – маслянистая жидкость, легче воды, темного цвета, с резким запахом. Главное свойство нефти - горючесть. При сгорании нефть дает больше тепла, чем каменный уголь. Нефть залегает глубоко в земле”. Этот прием часто используется и в художественной литературе.

Разъяснение посредством примера используется тогда, когда легче привести пример или примеры, иллюстрирующие данное понятие, чем дать его строгое определение через род и видовое отличие.

___________________________

1Ушинский К. Д.Собр. соч. М.- Л., 1948. Т 2. С 339-340. 49

 

Объяснение понятия “животный мир пустыни” происходит путем перечисления видов ее обитателей: верблюд, антилопа-джейран, черепаха, ящерица варан, кулан и др. Понятие “полезное ископаемое” объясняется перечислением видов (при­меров): нефть, каменный уголь, металлы и др. Разъяснение по­средством примера используется и в средней школе, и в начальной.

В учебнике “Природоведение” для 2 класса этот прием исполь­зован так: “Солнце, небо, облака, земля, камни, дождь, снег - это неживая природа. Растения, животные, человек - это живая при­рода. Помни, что животные - это и птицы, и звери, и насекомые, и рыбы, и ящерицы, и змеи, и черепахи, и лягушки, и черви”'. Вме­сто определения понятий “неживая природа”, “живая природа” и “животное” использован прием разъяснения путем примера.

Разновидностью этого приема являются остенсивные определения, к которым часто прибегают при обучении иностран­ному языку, когда называют и показывают предмет (или картин­ку с его изображением). Так же иногда поступают при разъясне­нии непонятных слов родного языка.

Другим приемом, заменяющим определение понятий, явля­ется сравнение — установление сходства сопоставляемых пред­метов. “Река - это поистине вечно длящийся карнавал, и всякий месяц она может похвалиться новыми красками” (Р. Эмерсон). “Якорь уже вышел из воды, он висит на цепи, как огромный мор­ской краб” (Т. Тэсс). К сравнению прибегают как на уровне на­учного познания, так и на уровне художественного отображения действительности. В. А. Сухомлинский использовал сравнение мозга ребенка с цветком розы: “Мы, учителя, имеем дело с са­мым нежным, самым тонким, самым чутким, что есть в приро­де, - с мозгом ребенка. Когда думаешь о детском мозге, пред­ставляешь нежный цветок розы, на котором дрожит капелька росы. Какая осторожность и нежность нужны для того, чтобы, сорвав цветок, не уронить каплю. Вот такая же осторожность нужна и нам каждую минуту: ведь мы прикасаемся к тончайше-

__________________________

'Клепинина 3. А. Природоведение. 2 класс. М., 1977. С. 5.

 

му и нежнейшему в природе - к мыслящей материи растущего организма'”.

В науке сравнение позволяет выяснить сходства и различия сопоставляемых предметов. В учебнике по биологии приводятся такие сравнения: “Тело медузы студенистое, похожее на зонтик”, “Почки - небольшие парные органы, имеющие форму бобов”; “Цветок гороха напоминает сидящего мотылька”; “Завязи пестиков шиповника скрыты в разросшемся цветоложе, похожем на бокал”. Во всех приведенных сравнениях общим признаком (основанием сравнения) является форма.

Сравнение на уровне художественного отображения действительности позволяет подметить общее, сходное в двух предметах и в яркой форме, образно выразить это сходство. М. Горький использует такое сравнение: “Грубость - такое же уродство, как горб”.

Художественные сравнения часто включают в свой состав слова: “как”, “как будто”, “словно” и др.

Приведем три сравнения людей с животными, которыми пользуется Агата Кристи при характеристике героев в детективном романе “Десять негритят”: “Филипп... двигался легко и бесшумно, как ягуар. И вообще во всем его облике было что-то от ягуара. Красивого хищника - вот кого он напоминал”; “Судья... обвёл глазами собравшихся и, вытянув шею, как разъяренная черепаха, сказал: “Я думаю, настало время нам поделиться друг с другом своими сведениями”; “Прикрытые складчатыми, как у ящера, веками глаза остановились на его лице”.

В. Набоков в рассказе “Весна в Фиальте” использует такие интересные сравнения: “...Елки молча торговали своими голубоватыми пирогами”; “...Кто-то, спасаясь, падая, хрустя, хохоча с запышкой, влез на сугроб, побежал, охнул сугроб, произвел ампутацию валенка”; “...Точно женская любовь была родниковой водой, содержащей целебные соли, которой она из своего ковшика охотно поила всякого, только напомни”.

Артур Конан Доил в одном предложении использует сразу три приема, заменяющие определение (приводит описание, характеристику и ряд сравнений): “Стоит мне и теперь закрыть глаза, Мари

____________________________

'Сухомлинский В. А. О воспитании. М., 1975. С. 87.

 

встает передо мной: щеки смуглые, как лепестки мускатной розы; взгляд карих глаз нежен и в то же время смел; волосы черные, как смоль, будят волнение в крови и в стихи просятся; а фигурка -точно молодая березка на ветру”.

Различение - установление отличия данного предмета от сходных сним предметов: “Быть моряком - это не только про­фессия. Это страсть, призвание, это клятва в верности морю”. “Человек бесхарактерный - это не человек, а неодушевленный предмет” (Н. С. де Шамфор).

– Конец работы –

Эта тема принадлежит разделу:

Конспект книги Предмет и значение логики

С иных позиций изучает мышление логика. На сайте allrefs.net читайте: Конспект книги Предмет и значение логики С иных позиций изучает мышление логика. Она исследует мышление как средство познания объективного мира, те его формы и. Конспект книги..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Приемы, сходные с определением понятий

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формы чувственного познания
Всякое познание начинается с живого созерцания, с ощуще­ний, чувственных восприятии. Предметы воздействуют на наши органы чувств и вызывают в них ощущения, которые восприни­маются мозгом. Других ср

Формы абстрактного мышления
Основными формами абстрактного мышления являются поня­тия, суждения и умозаключения. Понятие - форма мышления, в которой отражаются сущест­венные признаки одноэлементного класса или

Особенности абстрактного мышления
С помощью рационального (от лат. ratio - разум) мышления люди открывают законы мира, обнаруживают тенденции развития событий, анализируют общее и особенное в любом предмете, строят

Понятие логической формы
Логической формой конкретной мысли является строение этой мысли, т.е. способ связи ее составных частей. Логическая фор­ма отражает объективный мир, но это отражение не всей полно­ты содержания мира

Логические законы
Соблюдение законов логики - необходимое условие достиже­ния истины в процессе рассуждения. Основными формально-логи­ческими законами обычно считаются: 1) закон тождества; 2) за­кон непротиворечия,

Истинность мысли и формальная правильность рассуждений
Понятие истинности (ложности) относится лишь к конкрет­ному содержанию того или иного суждения. Если в суждении верно отражено то, что имеет место в действительности, то оно истинно, в противном сл

Теоретическое и практическое значение логики
Можно логично рассуждать, правильно строить свои умозаключения, опровергать доводы противника и не зная пра­вил логики, подобно тому, как нередко люди правильно говорят, не зная правил грамматики я

Семантические категории
Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым от­носятся: 1) предложени

Противоположность, противоречие
Соподчинение (координация) - это отношение между объема­ми двух или нескольких понятий, исключающих, друг друга, но при­надлежащих некоторому более общему (родовому) понятию (на­пример, “

Ошибки, возможные в определении
1. Определение должно быть соразмерным, т. е. объём определяющего понятия должен быть равен объему определяемого понятия. Dfd. = Dfп,. Это правило часто нару

Неявные определения
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется кон­текст, или набор аксиом, или описание способа построени

Определение через аксиомы
В современной математике и в математической логике широко применяется так называемый аксиоматический метод. Приведем пример2. Пусть дана система каких-то элементов (обозначаемых х, у,

Использование определений понятий в процессе обучения
Определение через род и видовое отличие и номинальное оп­ределение широко используются в процессе обучения. Приве­дем ряд примеров, взятых из школьных учебников. К определе­ниям через ближайший род

Правила деления понятий
Правильное деление понятия предполагает соблюдение оп­ределенных правил: 1. Деление должно быть соразмерным, т. е. сумма объе­мов видовых понятий должна быть равна объему

И дихотомическое деление
Приведенные примеры деления понятия иллюстрировали деление по видообразующему признаку, когда основанием деления служит признак, по которому образуются видовые по­нятия. Примеры деления по в

Треска зазналась
В камзоле Баклажан Был полон блеска. На кухне утром он сказал Селедке: - Треска зазналась! Ишь как много треска Изволила поднять на сковор

Общая характеристика суждения
Суждение - форма мышления, в которой что-либо утвержда­ется или отрицается о существовании предметов, связях между пред­метом и его свойствами или об отношениях между предметами. Пр

Суждение и предложение
Понятия в языке выражаются одним словом или группой слов. Суждения выражаются в виде повествовательных пред­ложений, которые содержат сообщение, какую-то информацию. Например: “Светит яркое солнце”

Суждения с отношениями
В них говорится об отношениях между предметами. Напри­мер: “Всякий протон тяжелее электрона”, “Французский писатель Виктор Гюго родился позднее французского писателя Стендаля”, “Отцы старше своих д

Распределенность терминов в категорических суждениях
Так как простое категорическое суждение состоит из терми­нов S и Р, которые, являясь понятиями, могут рассматриваться со стороны объема, то любое отношение между S и Р в простых сужде

Исчисление высказываний
Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:

Способы отрицания суждений
Два суждения называются отрицающими или противореча­щими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно лож­ными).

Отрицание сложных суждении
Чтобы получить отрицание сложных суждений, имеющих в сво­ем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъ­юнкцию и наобор

Исчисление высказываний
I. Символы исчисления высказываний состоят из знаков трех категорий: 1. а, b, с,d, е,f... и те же буквы с индексами а1 ,а2 ,...

Выражение логических связок (логических постоянных) в естественном языке
В мышлении мы оперируем не только простыми, но и сложны­ми суждениями, образуемыми из простых посредством логичес­ких связок (или операций) - конъюнкции, дизъюнкции, имплика­ции, эквиваленции, отри

Отношения между суждениями по значениям истинности
Суждения, как и понятия, делятся на сравнимые (имеют об­щи субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые. В математической логике два выска

Б. Деление суждений по модальности
В логике мы до сих пор рассматривали простые суждения, которые называются ассерторическими, а также составленные из   простых сложные суждения. В них утверждается и

Закон тождества
Этот закон формулируется так: “В процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе”. В математической логике закон тождества выражаетс

Закон непротиворечия
Если предмет А обладает определенным свойством, то в суж­дениях об А люди должны утверждать это свойство, а не отрицать его. Если же человек, утверждая что-либо, отрицает то же самое

Закон исключенного третьего
Онтологическим аналогом этого закона является то, что в предмете указанный признак присутствует или его нет, поэтому и в мышлении мы отражаем это обстоятельство в виде закона исключенного третьего.

Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
Как уже отмечалось, объективными предпосылками дейст­вия в мышлении закона непротиворечия и исключенного третьего являются наличие в природе, обществе (и самом мышлении) ус­тойчивых состояний у пре

Закон достаточного основания
Этот закон формулируется так: “Всякая истинная мысль дол­жна быть достаточно обоснованной”. Речь идет об обоснова­нии только истинных мыслей: ложные мысли обосновать нельзя, и нечего пытатьс

Общее понятие об умозаключении
Умозаключения, как и понятия и суждения, являются формой аб­страктного мышления. С помощью многообразных видов умозак­лючений опосредованно (т. е. не обращаясь к органам чувств) мы можем получать н

Понятие логического следования
Выведение следствий из данных посылок - широко распрост­раненная логическая операция. Как известно, условиями истинно­сти заключения является истинность посылок и логическая пра­вильность вывода. И

Дедуктивные умозаключения
В определении дедукции в логике выявляются два подхода: 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности i к новому

Понятие правила вывода
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила выво­да, или правила преобразования суждений, позволяют перехо­дить от посылок (суждений) о

Фигуры и модусы категорического силлогизма
Фигурами категорического силлогизма называются фор­мы силлогизма, различаемые по положению среднего термина (М) в посылках. Различают четыре фигуры:

Правила категорического силлогизма
Категорические силлогизмы в мышлении встречаются весь­ма часто. Для того чтобы получить истинное заключение, необхо­димо брать истинные посылки и соблюдать нижеперечисленные правила категорического

Формализация эпихейрем с общими посылками
Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют со­бой сокращенные простые категорические силлогизмы (энтимемы). С

Условные умозаключения
Чисто условным умозаключением называется такое опосредст­вованное умозаключение, в котором обе посылки являются услов­ными суждениями. Условным называется суждение, имеющее структуру: “Если

Отрицающий модус (modus tollens)
Структура его: Схема:   Если а,то а→b Не-b Не-а ā Формула ((а 

Первый вероятностный модус
Рассмотрим первый модус, не дающий достоверного заключе­ния. Структура его: Cхема:   Если а, то b. a→b b b ___________

Второй вероятностный модус
Это второй модус, не дающий достоверного заключения. Структура его: Схема: Если а, то b. а →b Не-а ā Вероят

Трилемма
Трилеммы так же, как и дилеммы, могут быть конструктив­ными и деструктивными; каждая из этих форм в свою очередь может быть простой или сложной. Простоя конструктивная трилемма состоит из дв

В умозаключении пропущена одна из посылок
В умозаключениях может быть пропущена первая посылка, она может подразумеваться, если выражает какое-то истинное суждение, формулирующее известное положение, теорему, за­кон и т. д. В усло

Простая контрапозиция
    Правило простой контрапозиции имеет следующ

Сложная контрапозиция
- правило сложной контрапозиции. ((a ^ b) → с) ((а

Рассуждение по правилу введения импликации
Правило вывода сформулировано так:    

Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истин­ных посылок при соблюдении соответствующих правил истин­ные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдо

Виды неполной индукции
Неполная индукция применяется в тех случаях, когда мы, во-первых, не можем рассмотреть все элементы интересую­щего нас класса явлений; во-вторых, если число объектов либо бесконечно, либо конечно,

Понятие вероятности
Различают два вида понятия “вероятность” - объективную вероятность и субъективную вероятность. Объективная вероят­ность - понятие, характеризующее количественную меру воз­можности появления

Методы установления причинной связи
Причинная связь между явлениями определяется посредст­вом ряда методов, (описание и классификация которых восхо­дит еще к ф. Бэкону и которые были развиты Дж. Ст. Миллем. _________________

Дедукция и индукция в учебном процессе
Как в любых процессах познания (научногоили обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. Ф. Энгельс писал: “Индукция и дедукция связаны между собой столь же необходимым

Виды аргументов
Различают несколько видов аргументов: 1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данны

Опровержение тезиса (прямое и косвенное)
Опровержение тезиса осуществляется с помощью следую­щих трех способов (первый - прямой способ, второй и третий -косвенные способы). 1. Опровержение фактами - самый верный

Выявление несостоятельности демонстрации
Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует и

Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису

Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”).В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непред

Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводи­мых в его подтверждение аргументов, то возникает ошибка, назы­ваемая “не вытекает”, “не следует”. Люди иногда вместо пра­виль

Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии)
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключе­ние от утверждения следствия к утверждению основания. Так, из посылок “Если ч

Понятие о софизмах и логических парадоксах
Непреднамеренная ошибка, допущенная человеком в мышле­нии, называется паралогизмом. Паралогизмы допускают мно­гие люди. Преднамеренная ошибка с целью запутать своего противника и выдать ложн

Понятие о логических парадоксах
Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) до­казывающее как это суждение, так и его отрицание. Парадоксы ___

Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нор­мальных множеств (нормальным множеством называется мно­жество, не содержащее се

Строгая аналогия
Характерным отличительным признаком строгой аналогии яв­ляется наличие необходимой связи между сходными признака­ми и переносимым признаком. Схема строгой аналогии такая: Предмет A

Нестрогая аналогия
В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суж­дение обозначить через 0, а истину через 1, то степень вероятности выводов по нест

Ложная аналогия
При нарушении указанных выше правил аналогия может дать ложное заключение, т. е. стать ложной. Вероятность заключения по ложной аналогии равна 0. Ложные аналогии иногда делаются умышленно, с целью

Виды гипотез
В зависимости от степени общности научные гипотезы мож­но разделить на общие, частные и единичные. Общая гипотеза - это научно обоснованное предположе­ние о законах и закономерностя

Построение гипотез
Путь построения и подтверждения гипотез проходит через несколько этапов. Разные авторы выделяют от 2 до 5 этапов, мы выделим 5. Эти этапы преподаватель может проиллюст­рировать, например, ходом пос

Логическая структура и виды ответов
1. Ответы на простые вопросы. Ответ на простой вопрос первого вида (уточняющий, определенный, прямой, “ли”-вопрос) предполагает одно из двух: “да” или “нет”. Например: “Является ли

К. Д. Ушинский и В. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
Большое значение в процессе обучения придавал логике чеш­ский педагог Я. А. Коменский. Он предлагал знакомить уча­щихся с краткими правилами умозаключений, подкреплять их яркими жизненными примерам

Развитие логического мышления младших школьников
Творческое использование опыта К. Д. Ушинского и В. А. Су­хомлинского по формированию логического мышления у млад­ших школьников с учетом их индивидуальных особенностей - за­лог воспитания правильн

Развитие логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и суть их доказательств, изу

Развитие логического мышления на уроках истории
При изучении материала по истории применяются различные приемы, способствующие развитию мышления, в первую оче­редь наглядные пособия: картины, диапозитивы, иллюстрации учебника. Большое м

Контрольные работы
Контрольная работа по курсу логики по темам “Понятие” и “Суждение” Вариант 1 1. Определить вид следующих понятий: капиталист, остров, кодекс, созвездие Большая медве

Ответы на кроссворд
По горизонтали: 1. Общеутвердительное. 2. Умозаключе­ние. 3. Изоморфизм. 4. Понятие. 5.Имя. 6. Абстрагирование. 7. Моделирование. 8. Тождественные. По вертикали: 1. Индукция.

Кроссворд
    П 2 По горизонтали:

Ответы на кроссворд
По горизонтали: 5. Пугало. 6. Редька. 11. Перчатка. 12. Ка­рандаш. 13. Солнце. 15. Волосы. 19. Глаза. 20. Терка. 21. Якорь. 23. Заяц. 24. Гусь. 25. Пчелы. По вертикали: 1. Ст

Логика в Древней Индии
История логики Индии связана с развитием индийской фило­софии. Древнейший литературный памятник Индии - Веды (II-начало I тысячелетия до н.э.), а наиболее древняя ее часть - Ригведа. С целью разъяс

Логика Древнего Китая
Под логикой Древнего Китая, по утверждению Пань Шимо, принято понимать прежде всего логику периода Чуньцю и Чжаньго (722-221 до н. э.), когда появляется понятие “философская дис­куссия” и создается

Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской шко­ле (у Парменида и Зенона). Гераклит Эфесский выступает с уче­нием о всеобщем движе

Логика в средние века
Средневековая логика (VI-XV вв.) изучена еще недостаточ­но. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые ре

Логика в России
Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций. Первый трактат по логике появ

Математическая логика
В XIX в. появляется математическая логика. Немецкий фило­соф Г. В. Лейбниц (1646-1716) - величайший математик и круп­нейший философ XVII в. - по праву считается ее основопо­ложником, Лейбниц пыталс

Конструктивная логика А. А. Маркова
Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков. В основе конст­руктивной математической

Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказыва­ний) была построена в 1920 г. польским математиком и логи­ком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначает­ся 1, “ложь” - 0, “нейтра

Отрицание Лукасевича
  х Nx 1/2 1/2

Отрицание Гейтинга
x Nx ½

Заключение
Цель познания в науке и повседневной жизни - получение ис­тинных знаний и полноценное использование их на практике. Зна­ние формальной логики и диалектики помогает предвидеть собы­тия и лучшим спос

Понятие
2.1.0. Как, по-Вашему; называется форма мышления, которая | является результатом обобщения предметов по ряду существен­ных признаков? 2.1.1. Суждение. 2.1.2. Понятие. 2.1

Логические основы теории аргументации
5.1.0. Какую, по-вашему, структуру имеет доказательство как логическая операция? - Оно имеет следующую структуру: 5.1.1. Тезис, аргументы, демонстрация. 5.1.2. Посылка, заключение

Список символов
а ^b; а * b; а &b; “а и b” - конъюнкция. a b; “а или b” - нестрогая дизъюнкция. a

В польской символике
Nx - отрицание х. Сху - импликация (х имплицирует y). Кху - конъюнкция х и у. Аху - нестрогая дизъюнкция

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги