рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дедукция и индукция в учебном процессе

Дедукция и индукция в учебном процессе - Конспект, раздел Философия, Конспект книги Предмет и значение логики Как В Любых Процессах Познания (Научногоили Обыденного), Так И В Процессе Обу...

Как в любых процессах познания (научногоили обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. Ф. Энгельс писал: “Индукция и дедукция связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну изних до небес за счет другой, надо стараться применять каждую на своем месте, а это­го можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг друга”'.

В индукции мы идем от посылок, выражающих знания мень­шей степени общности, к новому суждению большей степени общности, т. е. идем от отдельных конкретных явлений к обобщению. В дедукции ход рассуждения противоположный, т. е. от обобщений, выводов мы идем к отдельным конкретным фактам или суждениям меньшей степени общности. В процессе обуче­ния индуктивный и дедуктивный методы используются в един­стве. Индуктивный метод используется тогда, когда изучается

______________________

'Маркс К, Энгельс Ф .Соч. 2-е изд. Т. 20 .С.542—543.

 

новый материал, трудный для учащихся, но когда в результате беседы они сами смогут сделать определенное заключение обоб­щающего характера, или сформулировать правило, или доказать теорему, или вскрыть некоторую закономерность. Индуктивный метод больше активизирует учащихся, но от учителя требует творческого подхода и гибкости в преподавании. При этом затрачивается больше времени на подведение учащихся к самостоятельному заключению.

Дедуктивный метод состоит в том, что учитель сам формули­рует общее суждение, выражающее какое-то правило, закон, тео­рему и т. д., а затем применяет его, т. е. иллюстрирует частными примерами, случаями, фактами, событиями и т. д. Соединение дедукции и индукции в процессе обучения приводит к двум спосо­бам объяснения материала:

1) индуктивно-дедуктивному способу, когда объяснение “начи­нается с индукции и переходит затем в дедукцию (возможно, при значительном перевесе индукции)”,

2) дедуктивно-индуктивному способу, когда “сообщение уча­щимся нового осуществляется самим учителем в виде готового, сформулированного им правила или положения с последующими комментариями” '.

К. Д. Ушинский высоко ценил применение индукции при изуче­нии грамматики. На специально подобранных примерах он раз­вивал у детей умение подмечать закономерности языка и делать самостоятельные обобщения, формулировать правила, что име­ло огромное значение в развитии мышления младших школьни­ков. Дедукцию Ушинский ценил не меньше индукции и большую роль в обучении языку отводил последующим упражнениям, на­правленным на отыскание самими учащимися примеров на толь­ко что сформулированное правило. Эти же приемы используются не только на уроках родного языка, но и на уроках математики, истории, физики и др. Известный методист А. В. Текучев, обоб­щив данные экспериментальной проверки применения этих двух способов изучения материала, сделал вывод о том, что в работе над темой “Однородные члены предложения” (общее понятие,

'Текучев А. В. Методика русского языка в средней школе. М., 1980. С. 64.

 

союзы при однородных членах, обобщающие слова) оба способа могут быть использованы с одинаковым успехом; изучение же правил постановки знаков препинания при однородных членах предпочтительнее проводить дедуктивно-индуктивным спо­собом'. Соответствующая методика преподавания школьного предмета рекомендует учителям более конкретное использова­ние этих методов в работе над отдельными темами учебной школьной программы.

В математике имеется много приверженцев как индуктивно­го, так и дедуктивного метода. “На первых этапах обучения надо отдавать предпочтение индуктивному методу, постепенно подготавливая и используя дедуктивный подход”2, ибо индук­тивные методы изложения материала, при которых происходит последовательное обобщение понятий, способствуют более ак­тивному усвоению материала. Л. Д. Кудрявцев констатирует:

“В последние годы наблюдается стремление заменять по воз­можности индуктивный подход дедуктивным, целесообразность этого часто представляется сомнительной”3.

Однако как при индуктивном, так и при дедуктивном мето­дах необходимо при изложении новых понятий или новых общих теорий значительное время отводить на конкретные иллюстра­ции, на разбор примеров, анализ частных ситуаций. В методике преподавания каждое высказывание в категорической форме легко можно довести до абсурда. От самого учителя зависит оптимальный выбор метода, позволяющего на высоком уровне самостоятельности организовать познавательную деятельность учащихся.

В математике используются различные виды индукции: пол­ная, неполная и математическая. Применение математической индукции покажем на следующем примере4. Надо определить сумму п первых нечетных чисел:

1 + 3 + 5 + 7 + ... + (2n - 1).

__________________________

'Текучее А. В. Методика русского языка в средней школе. М., 1980. С. 65.

2Кудрявцев Л.Д. Современная математика и ее преподавание. М., 1980. С. 127.

3См.-.там же.С.131.

4Пример и решение см.: Головина Л. И., Яглом И. П. Индукция в геометрии. М„ 1961. С. 5.

 

Обозначив эту сумму через S(n), положим п == 1, 2, 3. 4, 5; тогда будем иметь:

S(1)=1,

S (2)= 1+3 =4,

S(3)=1+3+5=9,

S(4)=1+3+5+7=16,

S (5) = 1 + 3 + 5 + 7 + 9 = 25.

Мы наблюдаем интересную закономерность: при п = 1, 2, 3, 4, 5 сумма n последовательных четных чисел равна п2. Но заключение по аналогии, что это имеет место при любом п, сде­лать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, т. е. предположим, что для какого-то числа п наша формула верна, и попытаемся доказать, что тогда она верна и для следующего числа п + 1. Итак, мы полагаем, что S (n) = 1 + 3 + 5 + ... + (2n - 1) = n2. Вычислим

S (п +1)= 1+3+5 +...+(2n-1)+(2n+1).

Но по предположению, сумма п первых слагаемых равна п2, следовательно,

S (n + 1) = n2 + (2 п + 1) = (n + I)2.

Итак, предположив, что S (п) = n2 , мы доказали, что S(n + 1) = (n + 1)2. Но выше мы проверили, что эта формула верна для п = 1,2, 3, 4, 5, следовательно, она будет верна и для п = 6, и для п = 7 и т. д. Формула считается доказанной для любого числа слагаемых. Этот метод доказательства называется методом математической индукции.

Этим же методом' доказывается, что сумма первых n натураль­ных чисел, т.е. 1+2+3+4+5+...+n, обозначенная S1, (n), равна

n-(n+1)

2

______________________________

'Читателям, интересующимся применением индукции в математике, мы ре­комендуем интересную книгу Д. Пойа “Математика и правдоподобные рассу­ждения”. (М., 1975), первый том которой называется “Индукция и аналогия в математике”.

 

 

Умозаключения делятся на логически необходимые и вероят­ностные (правдоподобные). Некоторые виды неполной индукции дают лишь вероятностные (или правдоподобные) заключения.

В математическом мышлении присутствуют не только логиче­ские рассуждения, но и математическая интуиция, фантазия и чувство гармонии, позволяющие предвидеть ход решения зада­чи или доказательства теоремы. Однако, как пишет Л. Д. Куд­рявцев, здесь “интуитивные соображения и правдоподобные рас­суждения отдаются на суд холодного рассудка для их изучения, доказательства или опровержения”; истинность суждения доказывается “не проверкой его на ряде примеров, не проведением ряда экспериментов, что не имеет для математики доказатель­ной силы, а чисто логическим путем, по законам формальной ло­гики”. В ходе обучения математике предполагается, что “исполь­зование знаний, математического аппарата, интуиции, чувства гармонии, фантазии, умения думать, логики, эксперимента про­исходит не последовательно по этапам - все это взаимодейству­ет между собой в течение всего процесса”'. В результате этого взаимодействия у учащихся вузов и средних учебных заведений формируется, воспитывается математическая культура.

Итак, единство дедукции и индукции как в обучении, так и в научном творчестве своеобразно и ярко проявляется в математи­ке - науке, значительно отличающейся от естественных и от общественных наук как по методам доказательства, так и по методике передачи знаний учащимся.

Выше мы приводили типы и примеры сокращенных умозаклю­чений (категорического силлогизма, условных, разделительных и др.). Учащиеся в ходе обучения математике приобретают способность к свертыванию процесса математического рассу­ждения при решении задач знакомого типа - об этом писали еще известные русские методисты С. И. Шохор-Троцкий (в 191 б г.) и Ф. А. Эрн (в 1915 г.). Они отмечали, что “при многократном ре­шении однотипных задач учащимися отдельные этапы мысли­тельного процесса сокращаются и перестают осознаваться, но, когда нужно, учащийся может вернуться к полному развернуто-

_____________________________________________________

'КудрявцевЛ. Д. Современная математика и ее преподавание М., 1980. С. 91,2.

 

му рассуждению”'. Методисты-математики П. А. Шеварев и Н. А. Менчинская в начале 40-х годов также установили (со­ответственно на алгебраическом и арифметическом материа­ле), что “наряду с развернутыми умозаключениями в умст­венной деятельности школьников при решении задач занимают определенное место и свернутые умозаключения, когда уче­ник не осознает правила, общего положения, в соответствии с которым он фактически действует... не выполняет всей той цепи соображений и умозаключений, которые образуют пол­ную, развернутую систему решения”2. Сокращение процесса рассуждения возникает благодаря упражнениям, причем спо­собные к математике учащиеся переходят к свернутым рас­суждениям быстро, ребята со средними способностями - ме­дленнее, у неспособных не замечалось сколько-нибудь заметного свертывания даже в результате многих упражнений. В. А. Крутецкий высказывает такую гипотезу: “Вообще нико­гда и нигде, вероятно, человек не мыслит до конца разверну­тыми структурами”3. Но способные ученики мыслят сверну­тыми структурами, сокращенными умозаключениями при решении не только однотипных, но и новых задач; при этом по просьбе экспериментатора эти учащиеся восстанавливали свер­нутые структуры до полной (с их точки зрения) структуры. “Свернутые” мыслительные структуры способствуют более быстрой переработке информации, ускорению процесса реше­ния задач, упрощают выполнение сложных операций.

Изучая компоненты структуры математических способностей школьников, В. А. Крутецкий проанализировал высказывания ряда ученых-математиков и преподавателей математики средних школ по этому вопросу. Приблизительно 38 % опрошенных обратили вни­мание на свертывание процесса рассуждения у способных учащихся. Приведем эти высказывания: “Процесс рассуждения у способных учащихся сокращен и никогда не развернут до полной логической структуры. Это очень экономно, и в этом его значение”; “Я часто

__________________________

1Крутецкий В.А. Психология математических способностей. М., 1968. С. 291.

2Там же.

3Там же. С. 293.

 

наблюдал, как мыслят способные ученики, - для учителя и класса это развернутый и последовательный во всех звеньях процесс, а для себя - это отрывочный, беглый, очень сокращенный, прямо стенограмма мысли”. Ученые-математики выделяли “способ­ность быстро схватывать суть дела и проникать в глубины воп­роса, минуя промежуточные стадии рассуждения”, “способность мыслить, опуская многие звенья рассуждения”'.

Описывая качества ума этих учащихся, почти все опрошен­ные учителя математики и ученые-математики отмечали спо­собность к обобщению (98 %). Они так формулировали свои наблюдения: “Способный ученик быстро обобщает не только математический материал, но и метод рассуждения, доказатель­ства”; некоторые указывали на способность и даже своеобразную “страсть” к обобщению, способность “видеть общее в раз­ных явлениях”, “способность прийти от частного к общему”2.

Если проанализировать знания, умения и навыки учащихся, относящиеся к использованию дедукции и индукции, то можно выделить наряду с положительными моментами и ряд недос­татков. Положительными моментами правильного сочета­ния дедуктивных и индуктивных умозаключений в мышле­нии, а также рационального использования либо дедуктивного, либо индуктивного, либо дедуктивно-индуктивного, либо индук­тивно-дедуктивного методов (способов) работы на уроке явля­ются следующие:

1) учащиеся 8 и 9 классов при написании сочинения в подав­ляющем большинстве умеют подобрать материал (публици­стический, литературный, по личным впечатлениям) в соответствии с темой (84% обследованных учащихся), развернуть и до­казательно раскрыть основную мысль сочинения, определить границы темы, обобщать материал и делать из него выводы;

2) положительные сдвиги в знаниях учащихся по истории во многом обусловлены дедуктивным введением ряда понятий.

Но вместе с тем проявляет себя недостаточно развитое уме­ние использовать дедуктивный ход рассуждений: дав верное определение, учащийся не всегда справляется с анализом конкретного произведения под углом зрения этого определения.

______________________

'Крутецкий В. А. Психология математических способностей. М., 1968. С. 207.

2Там же. С. 206,209.

200

У некоторых учащихся отсутствуют выводы по теме сочине­ния, иногда имеет место разрыв между фактологическими и тео­ретическими знаниями, отмечается неумение делать выводы и обобщения и т. д.

Указанные положительные моменты и недостатки в знаниях учащихся свидетельствуют о важном значении умелого сочета­ния индукции и дедукции в ходе изложения, закрепления и про­верки усвоения школьного материала. Общих рецептов, как, в какой мере использовать дедуктивный или индуктивный методы в обучении, дать нельзя. Как пишет Л. Д. Кудрявцев (о методи­ческих принципах преподавания математики): “К сожалению, не существует точных рецептов, как надо преподавать различные разделы математики. Методика преподавания математики не наука, а искусство. Правда, это вовсе не означает, что методике преподавания математики не надо учить. Всякому искусству можно и должно учить: учатся и художники, и музыканты, и ар­тисты, и писатели”'.

На основе разбора ошибок, допускаемых в педагогическом процессе, можно еще раз сделать вывод о творческом характе­ре применения различных методов обучения и воспитания, о недопустимости шаблонного подхода в процессе обучения.

Задачи к теме “Умозаключение”

I. Даны три следующие посылки: а). Если целое число оканчи­вается на 0 или 2, то оно делится на 2. б). Данное число делится на 2. в). Данное число не оканчивается на 0. Вытекает ли из этих посылок логическое следствие, что число оканчивается на 2?

II. Сделать непосредственные умозаключения (превращение, обращение и противопоставление предикату) из суждений: а). Ни одно простое нераспространенное предложение не имеет второсте­пенные члены; б). Некоторые подлежащие выражаются именами существительными; в). Ни один ученик нашего класса не является шахматистом; г). Некоторые спортсмены - юниоры.

________________________________________________

'Кудрявцев Л. Д. Современная математика и ее преподавание. М., 1980. С. 112.

 

III. Проверить тремя способами (по особым правилам фигур, по модусам и по правилам категорического силлогизма), явля­ются ли приведенные ниже категорические силлогизмы правиль­ными, а заключение - истинным суждением.

1.Все рыбы плавают. 2.Все ягоды – плоды.

Это животное плавает. Арбуз – ягода.

Это животное – рыба. Арбуз – плод.

3. Во всех городах за полярным кругом бывают белые ночи.

Санкт Петербург не находится за полярным кругом.

В Санкт-Петербург не бывает белых ночей.

 

4. Чистый воздух полезен для дыхания человека.

В этой комнате чистый воздух.

Воздух этой комнаты полезен для дыхания человека.

IV. Восстановить следующие энтимемы до полного категориче­ского силлогизма.

1. Произвольное внимание - вид внимания, следовательно, произвольное внимание - важное и необходимое условие всех видов деятельности человека.

2. Все зимующие птицы зимой не улетают на юг, поэтому воробьи зимой не улетают на юг.

3. Романс - музыкально-поэтическое произведение для голо­са с инструментальным сопровождением, а элегия - жанровая разновидность романса.

V. Определить вид умозаключения.

1. Все, что способствует эффективному обучению детей, полезно.

Новаторство способствует эффективному обучению детей.

Новые методы обучения - новаторство.

Метод российского педагога Шаталова - новый метод обучения.

Метод российского педагога Шаталова полезен.

 

 

2. Все летучие мыши - представители отряда рукокрылых.

Все представители отряда рукокрылых - животные.

Все животные обладают обменом веществ.

Все летучие мыши обладают обменом веществ.

 

3. Все, что способствует прогрессу общества, полезно.

Подлинное искусство способствует прогрессу общества.

Значит, подлинное искусство полезно.

Опера Н. А. Римского-Корсакова “Царская невеста” - подлинное искусство.

Опера Н. А. Римского-Корсакова “Царская невеста” полезна.

 

4. Все, что требует мужества и героизма, есть подвиг.

Первый полет человека в космос требовал мужества и героизма.

Первый полет человека в космос есть подвиг.

Подвиги бессмертны.

Первый полет человека в космос есть подвиг.

Первый полет человека в космос бессмертен.

 

VI. Определить вид умозаключения, написать формулу, проверить, является ли она законом логики.

1. Если весна наступила, то в фермерском хозяйстве предстоит много работ.

Веснане наступила.

В фермерском хозяйстве не предстоит много работ.

 

2. Если на заводе повысится производительность труда, то возрастет рентабельность производства.

Если возрастет рентабельность производства, тоснизится себестоимость произведенной продукции.

Если на заводе повысится производительность труда, то на нем снизится себестоимость произведенной продукции.

 

3. Если подземная вода в местах обнажения выходит наружу, то образуется

родничок.

Подземная вода в местах обнажения вышла наружу.

Образовался родничок.

4. Еслимагнит нагреть, то онразмагнитится.

Магнитразмагнитился.__________

Магнит нагрели.

 

5. “Если жизнь тебя обманет, не печалься, не сердись” (А. С. Пушкин).

Жизнь тебя обманула._________________________

Тыне печалься,не сердись.

 

6. Постройте условно-категорическое умозаключение, первой посылкой которого является следующее высказывание И. В. Гете, процитированное Ю. П. Азаровым в книге “Искусство воспитывать” (М., 1985): “Если хочешь, чтобы твои наставления влияли

203

действительно благотворно на твоих учеников, предостерегай их от бесполезных знаний и ложных правил”.

 

7. Придумайте умозаключение, построенное по формуле:

((a→b) ^ ) .

VII. Постройте условно-категорическое умозаключение на основе следующих пословиц русского народа'.

Не узнав горя, не узнаешь и радости.

Бояться несчастья - и счастья не будет (вариант: не видать).

Что с возу упало, то пропало.

Люди рады лету, пчела рада цвету.

На красный цветок и пчела летит.

От одного порченого яблока целый воз загнивает.

Куда один баран, туда и все стадо.

В умной беседе ума набраться, в глупой - свои растерять.

Напряталась матка от деток - напрячутся и деткиот матки.

Где дым,тами огонь. Огоньбез дыму не живет.

Кто о ком за глаза худо говорит, тот того боится.

Неправдой нажитое впрок не пойдет.

Неправедное богатстве прахом пойдет.

 

VIII. Постройте условно-категорическое умозаключение на основе следующего сложного суждения: “Попробуй-ка научить сострадать, если человек с детства не страдал, если боится даже самой малой боли, пустякового неудобства и если его всю жизнь предохраняли от сострадания” (С. Алексеев).

Первая условная посылка этого умозаключения такая: “Если человек с детства не страдал, боится даже самой малой боли, пустякового неудобства, его всю жизнь предохраняли от состра­дания, то попробуй-ка научить этого человека сострадать”.

Формула этой посылки;

(^b^c^d)→е. Сформулируйте вторую посылку и заключение.

________________________________

'Даль В. Пословицы русского народа. Сборник. М,, 1957. С. 54, 58, 59,176, 181, 186, 187.

204


IX. Приведем пример рассуждений Шерлока Холмса из рассказа А. Конан Дойла “Пестрая лента”:

“В ее остановившихся глазах был испуг, словно у затравлен­ного зверя. Ей было не больше тридцати лет, но в волосах уже блестела седина.

Шерлок Холме окинул ее своим быстрым всепонимающим взглядом.

- Вам нечего бояться, - сказал он, ласково погладив ее по руке.

- Я уверен, что нам удастся отстранить от Вас все неприят­ности... Вы приехали утренним поездом.

- Разве Вы меня знаете?

- Нет, но я заметил в Вашей левой перчатке обратный билет. Вы рано встали, а потом, направляясь на станцию, долго тряс­лись в двуколке по скверной дороге.

Дама вздрогнула и в замешательстве взглянула на Холмса,

- Здесь нет никакого чуда, сударыня, - сказал он, улыбаясь. -Левый рукав Вашего жакета, по крайней мере, в семи местах обрызган грязью. Пятна совершенно свежие. Так обрызгаться можно только в двуколке, сидя слева от кучера.

- Все так и было, - сказала она”.

Постройте два условно-категорических умозаключения, соот­ветствующие структуре

((а→b)^ а)b, взяв за основу приве­денные рассуждения Шерлока Холмса.

X. Определите вид умозаключения, напишите формулу, проверьте, является ли она законом логики.

1. Водоемы бывают пресные или соленые.

Это озеро -пресный водоем.

Это озеро не являетсясоленым водоемом.

 

2. Светофор светит красным, или желтым, или зеленым цветом.

Сейчас светофор не светит ни красным, ни зеленым цветом.

Сейчас светофор светит желтым цветом.

3. У человека различают следующие виды памяти: двигательная, эмоциональная, образная, словесно-логическая.

Ведущееместо у человека,как правило, занимает словесно-логическая память.

Ведущее место у человека, как правило, не занимают ни двигательная, н эмоциональная, ни образная память.

205

4.Иммунитет бывает или естественный, или искусственный.

Естественный иммунитет бывает или врожденный, или приобретенный.

Иммунитет бывает или врожденный, или приобретенный, или искусст­венный.

 

5. Придумайте умозаключения, построенные по таким фор­мулам:

((a ύ b)^ b)

((а ύ b) ^ ) → b

6. В “Словаре античности” (М., 1989) в статье “Шерсть” на­писано:Шерсть. Служила в античности основным текстиль­ным сырьем. Большую часть шерсти давали овцы, хотя исполь­зовалась также козья и верблюжья шерсть. Для производства разнообразных видов тканей разводились овцы различных по­род. Шерсть получали путем стрижки пинцетными ножницами, реже - выщипыванием”.

Постройте два разделительно-категорических умозаключе­ния, используя этот материал: а) на основании видов шерсти; б) на основании способов получения шерсти.

 

7. Правильно ли построено следующее разделительно-категори­ческое умозаключение? Если оно построено неправильно, то ука­жите, какая допущена ошибка.

 

Ученик в переводе предложения ошибся или из-за незнания грамматики язы­ка, или из-за отсутствия знаний о многозначности смысла переводимых слов.

Этот ученик ошибся в переводе предложения из-за незнания грамматики

языка.

Этот ученик не ошибался в переводе из-за отсутствия знаний о многознач­ности смысла переводимых слов.

XI. Определите вид дилеммы на примере, взятом из романа американского писателя Г. Мелвилла “Моби Дик, или Белый кит”, напишите ее формулу.

Несколько лет назад китобойцы одного корабля, охотившись на Белого кита, потерпели крушение. Вступив в бой с китом, все члены экипажа погибли, за исключением капитана. Капитан собирает новую команду китобойцев. Измученные долгим

206

плаванием, оставшись без продуктов, китобойцы, наконец, встре­чают Белого кита, который заманивает их во льды. Перед капи­таном стоит дилемма:

Если мы будем преследовать кита и далее, то мы, обессилев, можем погиб­нуть во льдах.

А если мы повернем назад, то Белый кит будет нападать на другие корабли.

Но мы можем его преследовать или повернуть назад.

Мы можем погибнуть во льдах или погибнут другие экипажи.

 

XII. В романе “Перстень Борджа” Джеймс X. Чейз описывает такую ситуацию. Чтобы пленникам выбраться из поместья Каленберга, есть четыре пути: идти на восток, или на юг, или на север или на запад. Это полилемма, состоящая из четырех альтернатив Постройте эту полилемму, которой соответствует формула:

((а→b)6(с→d)^(е→f)^(mn)^(a ύ c ύ e ύ m)) → (b ύ d ύ f ύ n).

Каленберг, открыв карту своего поместья, комментирует “Подход с востока перегораживает горный хребет. Вы не альпинисты, я бы не советовал двигаться в этом направлении. Дол жен предупредить, что зулусы - опытные скалолазы и быстро догонят вас. Не рекомендовал бы и юг. На карте показана река подходы к ней сильно заболочены, там полно крокодилов и змей Северная дорога относительно проста. Вы с ней хорошо знакомы. Однако двадцать моих зулусов постоянно патрулируют это участок... Они впустили вас, исполняя мое указание, но едва л) позволят вам уйти. Значит, остается лишь западная граница Пройти туда трудно, но возможно. Там нет воды, и хорошая тропа ведет к шоссе на Мейнвилль. До него сто двадцать мил1 придется спешить. Зулус, конечно, может догнать бегущую лошадь, но у вас в запасе три часа... В четыре утра вас освободят” (Здесь и далее курсив мой. - А. Г.).

Они выбрали южную границу, так решив стоящую перед ним полилемму: “Шли по узкой тропе, Гэрри решил, как перехитрит зулусов. Выбери они западный маршрут, исход охоты зависел бы от того, кто быстрее - они или зулусы, но преследователи могли обогнать лошадь. Идти на восток гибельно. Никто не умел лазить по горам. Северная дорога усиленно охранялась.

207

Оставалась лишь южная граница... болота, крокодилы, змеи, но зулусы вряд ли подумают, что они выбрали этот путь”.

XIII. Найдите в художественной литературе дилеммы и трилеммы военного и мирного времени. Опишите ситуацию, в кото­рой происходит действие, затем четко сформулируйте дилемму (трилемму), проанализируйте, какую из альтернатив выбрал че­ловек и каким оказался результат его выбора.

208

 

Глава VI

ЛОГИЧЕСКИЕ ОСНОВЫ ТЕОРИИ АРГУМЕНТАЦИИ

§ 1. Понятие доказательства

Познание отдельных предметов, их свойств начинается с чувственных форм (ощущений и восприятии). Мы видим, что этот дом еще не достроен, ощущаем вкус горького лекарства и т. д. Открываемые этими формами истины не подлежат особому доказательству, они очевидны. Однако во многих случаях, напри мер, на лекции, в сочинении, в научной работе, в докладе, в ход” полемики, на судебных заседаниях, на защите диссертации и во многих других, нам приходится доказывать, обосновывать вы сказываемые нами суждения.

Доказательность - важное качество правильного мышления. Доказательство связано с аргументацией, но они не тождественны.

Аргументация - способ рассуждения, включающий доказательство и опровержение, в процессе которого создается убеждение в истинности тезиса и ложности антитезиса как у самого доказывающего, так и оппонентов; обосновывается целесообразное принятия тезиса с целью выработки активной жизненной позиции реализации определенных программ действий, вытекающих из доказываемого положения'. Понятие “аргументация” богаче по содержанию, чем понятие “доказательство”: целью доказательства является установление истинности тезиса, а целью аргументации еще и обоснование целесообразности принятия этого тезиса, пою его важного значения в данной жизненной ситуации и т. п. В теории

_____________________

'См.: Брутян Г. А. Аргументация. // Вопросы философии. 1982. №11.

 

 

аргументации “аргумент” также понимается шире, чем в теории доказательства, ибо в первой имеются в виду не только аргумен­ты, подтверждающие истинность тезиса, но и аргументы, обос­новывающие целесообразность его принятия, демонстрирующие его преимущества по сравнению с другими подобными утвержде­ниями (предложениями). Аргументы в процессе аргументации го­раздо разнообразнее, чем в процессе доказательства.

Форма аргументации и форма доказательства также не сов­падают полностью. Первая, как и последняя, включает в себя различные виды умозаключений (дедуктивные, индуктивные, по аналогии) или их цепь, но, кроме того, сочетая доказательство и опровержение, предусматривает обоснование. Форма аргумента­ции чаще всего носит характер диалога, ибо аргументирующий не только доказывает свой тезис, но и опровергает антитезис оппонента, убеждая его и/или являющуюся свидетелем дискус­сии аудиторию в правильности своего тезиса, стремится сде­лать их своими единомышленниками.

Диалог как наиболее аргументированная форма ведения бесе­ды пришел к нам из древности (так, Древняя Греция - родина диалогов Платона, техники спора в форме вопросов и ответов Сократа и т. п.). Но диалог - это внешняя форма аргументации:

оппонент может только мыслиться (что особенно наглядно про­является в письменной аргументации). Внутренняя форма аргу­ментации представляет собой цепь доказательств и опроверже­ний аргументирующего в процессе доказательства им тезиса и осуществления убеждения'. В процессе аргументации выработка убеждений у собеседника или аудитории часто связана с их пере­убеждением. Поэтому в аргументации велика роль риторики в ее традиционном понимании как искусства красноречия. В этом смы­сле до сих пор представляет интерес “Риторика” Аристотеля, в которой наука о красноречии рассматривается как теория и прак­тика убеждения в процессе доказательства истинности тезиса. “Слово есть великий властелин, который, обладая весьма малым и совершенно незаметным телом, совершает чудеснейшие дела. Ибо оно может и страх изгнать, и печаль уничтожить, и радость вселить и сострадание пробудить”, - писал древнегреческий

_____________________

'См.: БрутянГ.А. Аргументация. Ереван, 1984.

 

 

ученый Горгий об искусстве аргументации'. Не было периода в истории, когда бы люди не аргументировали. Без аргументации высказываний невозможно интеллектуальное общение, ибо она -необходимый инструмент познания истины.

Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных убеждений. В науке ученым приходится доказывать самые раз личные суждения, например, суждения о том, что существовало до нашей эры, к какому периоду относятся предметы, обнаруженные при археологических раскопках, об атмосфере планет Солнечной системы, о звездах и галактиках Вселенной, теоремы математики, суждения о направлениях развития электронной техники, о возможности долгосрочных прогнозов погоды, ( тайнах Мирового океана и космоса. Все эти суждения должны быть научно обоснованы.

Доказательство - это совокупность логических приемов обо снования истинности тезиса. Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данных науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере, на предрассудках, на неосведомленности людей вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах. Поэтому убедить еще не значит доказать.

Структура доказательства:

– Конец работы –

Эта тема принадлежит разделу:

Конспект книги Предмет и значение логики

С иных позиций изучает мышление логика. На сайте allrefs.net читайте: Конспект книги Предмет и значение логики С иных позиций изучает мышление логика. Она исследует мышление как средство познания объективного мира, те его формы и. Конспект книги..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дедукция и индукция в учебном процессе

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формы чувственного познания
Всякое познание начинается с живого созерцания, с ощуще­ний, чувственных восприятии. Предметы воздействуют на наши органы чувств и вызывают в них ощущения, которые восприни­маются мозгом. Других ср

Формы абстрактного мышления
Основными формами абстрактного мышления являются поня­тия, суждения и умозаключения. Понятие - форма мышления, в которой отражаются сущест­венные признаки одноэлементного класса или

Особенности абстрактного мышления
С помощью рационального (от лат. ratio - разум) мышления люди открывают законы мира, обнаруживают тенденции развития событий, анализируют общее и особенное в любом предмете, строят

Понятие логической формы
Логической формой конкретной мысли является строение этой мысли, т.е. способ связи ее составных частей. Логическая фор­ма отражает объективный мир, но это отражение не всей полно­ты содержания мира

Логические законы
Соблюдение законов логики - необходимое условие достиже­ния истины в процессе рассуждения. Основными формально-логи­ческими законами обычно считаются: 1) закон тождества; 2) за­кон непротиворечия,

Истинность мысли и формальная правильность рассуждений
Понятие истинности (ложности) относится лишь к конкрет­ному содержанию того или иного суждения. Если в суждении верно отражено то, что имеет место в действительности, то оно истинно, в противном сл

Теоретическое и практическое значение логики
Можно логично рассуждать, правильно строить свои умозаключения, опровергать доводы противника и не зная пра­вил логики, подобно тому, как нередко люди правильно говорят, не зная правил грамматики я

Семантические категории
Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым от­носятся: 1) предложени

Противоположность, противоречие
Соподчинение (координация) - это отношение между объема­ми двух или нескольких понятий, исключающих, друг друга, но при­надлежащих некоторому более общему (родовому) понятию (на­пример, “

Ошибки, возможные в определении
1. Определение должно быть соразмерным, т. е. объём определяющего понятия должен быть равен объему определяемого понятия. Dfd. = Dfп,. Это правило часто нару

Неявные определения
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется кон­текст, или набор аксиом, или описание способа построени

Определение через аксиомы
В современной математике и в математической логике широко применяется так называемый аксиоматический метод. Приведем пример2. Пусть дана система каких-то элементов (обозначаемых х, у,

Использование определений понятий в процессе обучения
Определение через род и видовое отличие и номинальное оп­ределение широко используются в процессе обучения. Приве­дем ряд примеров, взятых из школьных учебников. К определе­ниям через ближайший род

Приемы, сходные с определением понятий
Всем понятиям определение дать невозможно (к тому же этом нет необходимости), поэтому в науке и в процессе обучения используются другие способы введения понятий – приёмы, сходные с определен

Правила деления понятий
Правильное деление понятия предполагает соблюдение оп­ределенных правил: 1. Деление должно быть соразмерным, т. е. сумма объе­мов видовых понятий должна быть равна объему

И дихотомическое деление
Приведенные примеры деления понятия иллюстрировали деление по видообразующему признаку, когда основанием деления служит признак, по которому образуются видовые по­нятия. Примеры деления по в

Треска зазналась
В камзоле Баклажан Был полон блеска. На кухне утром он сказал Селедке: - Треска зазналась! Ишь как много треска Изволила поднять на сковор

Общая характеристика суждения
Суждение - форма мышления, в которой что-либо утвержда­ется или отрицается о существовании предметов, связях между пред­метом и его свойствами или об отношениях между предметами. Пр

Суждение и предложение
Понятия в языке выражаются одним словом или группой слов. Суждения выражаются в виде повествовательных пред­ложений, которые содержат сообщение, какую-то информацию. Например: “Светит яркое солнце”

Суждения с отношениями
В них говорится об отношениях между предметами. Напри­мер: “Всякий протон тяжелее электрона”, “Французский писатель Виктор Гюго родился позднее французского писателя Стендаля”, “Отцы старше своих д

Распределенность терминов в категорических суждениях
Так как простое категорическое суждение состоит из терми­нов S и Р, которые, являясь понятиями, могут рассматриваться со стороны объема, то любое отношение между S и Р в простых сужде

Исчисление высказываний
Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:

Способы отрицания суждений
Два суждения называются отрицающими или противореча­щими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно лож­ными).

Отрицание сложных суждении
Чтобы получить отрицание сложных суждений, имеющих в сво­ем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъ­юнкцию и наобор

Исчисление высказываний
I. Символы исчисления высказываний состоят из знаков трех категорий: 1. а, b, с,d, е,f... и те же буквы с индексами а1 ,а2 ,...

Выражение логических связок (логических постоянных) в естественном языке
В мышлении мы оперируем не только простыми, но и сложны­ми суждениями, образуемыми из простых посредством логичес­ких связок (или операций) - конъюнкции, дизъюнкции, имплика­ции, эквиваленции, отри

Отношения между суждениями по значениям истинности
Суждения, как и понятия, делятся на сравнимые (имеют об­щи субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые. В математической логике два выска

Б. Деление суждений по модальности
В логике мы до сих пор рассматривали простые суждения, которые называются ассерторическими, а также составленные из   простых сложные суждения. В них утверждается и

Закон тождества
Этот закон формулируется так: “В процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе”. В математической логике закон тождества выражаетс

Закон непротиворечия
Если предмет А обладает определенным свойством, то в суж­дениях об А люди должны утверждать это свойство, а не отрицать его. Если же человек, утверждая что-либо, отрицает то же самое

Закон исключенного третьего
Онтологическим аналогом этого закона является то, что в предмете указанный признак присутствует или его нет, поэтому и в мышлении мы отражаем это обстоятельство в виде закона исключенного третьего.

Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
Как уже отмечалось, объективными предпосылками дейст­вия в мышлении закона непротиворечия и исключенного третьего являются наличие в природе, обществе (и самом мышлении) ус­тойчивых состояний у пре

Закон достаточного основания
Этот закон формулируется так: “Всякая истинная мысль дол­жна быть достаточно обоснованной”. Речь идет об обоснова­нии только истинных мыслей: ложные мысли обосновать нельзя, и нечего пытатьс

Общее понятие об умозаключении
Умозаключения, как и понятия и суждения, являются формой аб­страктного мышления. С помощью многообразных видов умозак­лючений опосредованно (т. е. не обращаясь к органам чувств) мы можем получать н

Понятие логического следования
Выведение следствий из данных посылок - широко распрост­раненная логическая операция. Как известно, условиями истинно­сти заключения является истинность посылок и логическая пра­вильность вывода. И

Дедуктивные умозаключения
В определении дедукции в логике выявляются два подхода: 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности i к новому

Понятие правила вывода
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила выво­да, или правила преобразования суждений, позволяют перехо­дить от посылок (суждений) о

Фигуры и модусы категорического силлогизма
Фигурами категорического силлогизма называются фор­мы силлогизма, различаемые по положению среднего термина (М) в посылках. Различают четыре фигуры:

Правила категорического силлогизма
Категорические силлогизмы в мышлении встречаются весь­ма часто. Для того чтобы получить истинное заключение, необхо­димо брать истинные посылки и соблюдать нижеперечисленные правила категорического

Формализация эпихейрем с общими посылками
Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют со­бой сокращенные простые категорические силлогизмы (энтимемы). С

Условные умозаключения
Чисто условным умозаключением называется такое опосредст­вованное умозаключение, в котором обе посылки являются услов­ными суждениями. Условным называется суждение, имеющее структуру: “Если

Отрицающий модус (modus tollens)
Структура его: Схема:   Если а,то а→b Не-b Не-а ā Формула ((а 

Первый вероятностный модус
Рассмотрим первый модус, не дающий достоверного заключе­ния. Структура его: Cхема:   Если а, то b. a→b b b ___________

Второй вероятностный модус
Это второй модус, не дающий достоверного заключения. Структура его: Схема: Если а, то b. а →b Не-а ā Вероят

Трилемма
Трилеммы так же, как и дилеммы, могут быть конструктив­ными и деструктивными; каждая из этих форм в свою очередь может быть простой или сложной. Простоя конструктивная трилемма состоит из дв

В умозаключении пропущена одна из посылок
В умозаключениях может быть пропущена первая посылка, она может подразумеваться, если выражает какое-то истинное суждение, формулирующее известное положение, теорему, за­кон и т. д. В усло

Простая контрапозиция
    Правило простой контрапозиции имеет следующ

Сложная контрапозиция
- правило сложной контрапозиции. ((a ^ b) → с) ((а

Рассуждение по правилу введения импликации
Правило вывода сформулировано так:    

Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истин­ных посылок при соблюдении соответствующих правил истин­ные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдо

Виды неполной индукции
Неполная индукция применяется в тех случаях, когда мы, во-первых, не можем рассмотреть все элементы интересую­щего нас класса явлений; во-вторых, если число объектов либо бесконечно, либо конечно,

Понятие вероятности
Различают два вида понятия “вероятность” - объективную вероятность и субъективную вероятность. Объективная вероят­ность - понятие, характеризующее количественную меру воз­можности появления

Методы установления причинной связи
Причинная связь между явлениями определяется посредст­вом ряда методов, (описание и классификация которых восхо­дит еще к ф. Бэкону и которые были развиты Дж. Ст. Миллем. _________________

Виды аргументов
Различают несколько видов аргументов: 1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данны

Опровержение тезиса (прямое и косвенное)
Опровержение тезиса осуществляется с помощью следую­щих трех способов (первый - прямой способ, второй и третий -косвенные способы). 1. Опровержение фактами - самый верный

Выявление несостоятельности демонстрации
Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует и

Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису

Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”).В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непред

Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводи­мых в его подтверждение аргументов, то возникает ошибка, назы­ваемая “не вытекает”, “не следует”. Люди иногда вместо пра­виль

Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии)
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключе­ние от утверждения следствия к утверждению основания. Так, из посылок “Если ч

Понятие о софизмах и логических парадоксах
Непреднамеренная ошибка, допущенная человеком в мышле­нии, называется паралогизмом. Паралогизмы допускают мно­гие люди. Преднамеренная ошибка с целью запутать своего противника и выдать ложн

Понятие о логических парадоксах
Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) до­казывающее как это суждение, так и его отрицание. Парадоксы ___

Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нор­мальных множеств (нормальным множеством называется мно­жество, не содержащее се

Строгая аналогия
Характерным отличительным признаком строгой аналогии яв­ляется наличие необходимой связи между сходными признака­ми и переносимым признаком. Схема строгой аналогии такая: Предмет A

Нестрогая аналогия
В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суж­дение обозначить через 0, а истину через 1, то степень вероятности выводов по нест

Ложная аналогия
При нарушении указанных выше правил аналогия может дать ложное заключение, т. е. стать ложной. Вероятность заключения по ложной аналогии равна 0. Ложные аналогии иногда делаются умышленно, с целью

Виды гипотез
В зависимости от степени общности научные гипотезы мож­но разделить на общие, частные и единичные. Общая гипотеза - это научно обоснованное предположе­ние о законах и закономерностя

Построение гипотез
Путь построения и подтверждения гипотез проходит через несколько этапов. Разные авторы выделяют от 2 до 5 этапов, мы выделим 5. Эти этапы преподаватель может проиллюст­рировать, например, ходом пос

Логическая структура и виды ответов
1. Ответы на простые вопросы. Ответ на простой вопрос первого вида (уточняющий, определенный, прямой, “ли”-вопрос) предполагает одно из двух: “да” или “нет”. Например: “Является ли

К. Д. Ушинский и В. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
Большое значение в процессе обучения придавал логике чеш­ский педагог Я. А. Коменский. Он предлагал знакомить уча­щихся с краткими правилами умозаключений, подкреплять их яркими жизненными примерам

Развитие логического мышления младших школьников
Творческое использование опыта К. Д. Ушинского и В. А. Су­хомлинского по формированию логического мышления у млад­ших школьников с учетом их индивидуальных особенностей - за­лог воспитания правильн

Развитие логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и суть их доказательств, изу

Развитие логического мышления на уроках истории
При изучении материала по истории применяются различные приемы, способствующие развитию мышления, в первую оче­редь наглядные пособия: картины, диапозитивы, иллюстрации учебника. Большое м

Контрольные работы
Контрольная работа по курсу логики по темам “Понятие” и “Суждение” Вариант 1 1. Определить вид следующих понятий: капиталист, остров, кодекс, созвездие Большая медве

Ответы на кроссворд
По горизонтали: 1. Общеутвердительное. 2. Умозаключе­ние. 3. Изоморфизм. 4. Понятие. 5.Имя. 6. Абстрагирование. 7. Моделирование. 8. Тождественные. По вертикали: 1. Индукция.

Кроссворд
    П 2 По горизонтали:

Ответы на кроссворд
По горизонтали: 5. Пугало. 6. Редька. 11. Перчатка. 12. Ка­рандаш. 13. Солнце. 15. Волосы. 19. Глаза. 20. Терка. 21. Якорь. 23. Заяц. 24. Гусь. 25. Пчелы. По вертикали: 1. Ст

Логика в Древней Индии
История логики Индии связана с развитием индийской фило­софии. Древнейший литературный памятник Индии - Веды (II-начало I тысячелетия до н.э.), а наиболее древняя ее часть - Ригведа. С целью разъяс

Логика Древнего Китая
Под логикой Древнего Китая, по утверждению Пань Шимо, принято понимать прежде всего логику периода Чуньцю и Чжаньго (722-221 до н. э.), когда появляется понятие “философская дис­куссия” и создается

Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской шко­ле (у Парменида и Зенона). Гераклит Эфесский выступает с уче­нием о всеобщем движе

Логика в средние века
Средневековая логика (VI-XV вв.) изучена еще недостаточ­но. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые ре

Логика в России
Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций. Первый трактат по логике появ

Математическая логика
В XIX в. появляется математическая логика. Немецкий фило­соф Г. В. Лейбниц (1646-1716) - величайший математик и круп­нейший философ XVII в. - по праву считается ее основопо­ложником, Лейбниц пыталс

Конструктивная логика А. А. Маркова
Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков. В основе конст­руктивной математической

Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказыва­ний) была построена в 1920 г. польским математиком и логи­ком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначает­ся 1, “ложь” - 0, “нейтра

Отрицание Лукасевича
  х Nx 1/2 1/2

Отрицание Гейтинга
x Nx ½

Заключение
Цель познания в науке и повседневной жизни - получение ис­тинных знаний и полноценное использование их на практике. Зна­ние формальной логики и диалектики помогает предвидеть собы­тия и лучшим спос

Понятие
2.1.0. Как, по-Вашему; называется форма мышления, которая | является результатом обобщения предметов по ряду существен­ных признаков? 2.1.1. Суждение. 2.1.2. Понятие. 2.1

Логические основы теории аргументации
5.1.0. Какую, по-вашему, структуру имеет доказательство как логическая операция? - Оно имеет следующую структуру: 5.1.1. Тезис, аргументы, демонстрация. 5.1.2. Посылка, заключение

Список символов
а ^b; а * b; а &b; “а и b” - конъюнкция. a b; “а или b” - нестрогая дизъюнкция. a

В польской символике
Nx - отрицание х. Сху - импликация (х имплицирует y). Кху - конъюнкция х и у. Аху - нестрогая дизъюнкция

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги