рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Развитие логического мышления младших школьников

Развитие логического мышления младших школьников - Конспект, раздел Философия, Конспект книги ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ С иных позиций изучает мышление логика Творческое Использование Опыта К. Д. Ушинского И В. А. Су­хомлинского По Форм...

Творческое использование опыта К. Д. Ушинского и В. А. Су­хомлинского по формированию логического мышления у млад­ших школьников с учетом их индивидуальных особенностей - за­лог воспитания правильно логически мыслящего человека.

В процессе обучения ведущая роль отводится оперированию понятиями. В числе операций над понятиями имеются такие, как определение понятий, деление, обобщение, ограничение понятий, объединение (сложение) и пересечение (умножение) объемов понятий и др.

Особенно важная роль принадлежит операции определения понятий. Учителя начальных классов ведут большую работу по разъяснению определений через род и видовое отличие, доведе­нию их содержания, т. е. совокупности существенных призна­ков, до сознания учащихся.

Из практики обучения известно, что учащиеся начальных клас-

________________________

'Сухомлинский В. А. O воспитании. М., 1975. С. 95-96.

 

сов путают понятия “прямоугольник” и “периметр прямоугольника”; “площадь прямоугольника” и “периметр прямоугольника”). Поэто­му учителям приходится проводить всю необходимую разъяс­нительную работу, с тем чтобы учащиеся усвоили эти понятия.

В начальной школе, в 3 классе, на уроках природоведения уча­щимся даются простейшие, доступные для их понимания определения таких понятий: “горизонт”, “линия горизонта”, “ком­пас”, “план местности”, “масштаб чертежа”, “океан”, “равни­на”, “овраг”, “гора”, “полезное ископаемое”, “материю), “море” и др. Эти определения простые, понятные для учащихся млад­ших классов. Например: “Границу видимого пространства, где нам кажется, что небо сходится с землей, называют линией го­ризонта”'. Некоторые определения, например, понятий “океан”, “равнина”, даются весьма условно. “Океаны - это огромные пространства воды”, или “Большие пространства с ровной по­верхностью называют равнинами”2. На раннем этапе обучения учащиеся могут пока довольствоваться такими приблизитель­ными определениями, а вернее, характеристиками. Отмечено, что школьники на уроках природоведения иногда недостаточно хорошо усваивают такие понятия: “свойства снега: белый; непрозрачный; тает; превращается в воду; рыхлый”; “свойства льда: бесцветный; прозрачный; тает; превращается в воду; хруп­кий”; “круговорот воды в природе”; “расширение воды при ох­лаждении ниже +4° С и при замерзании”.

Чтобы научить учащихся правильно делать обобщения и ог­раничения, например в 1 классе, предлагается такая задача: “На ветках дерева сидели 5 воробьев и 3 галки. Сколько всего птиц сидело на дереве?” В 3 классе на уроках природоведения дела­ются следующие обобщения и ограничения понятий (примеры взяты из учебника “Природоведение” для 3 класса).

Обобщение:

1). Человек, сложный организм, организм (с. 212).

2). Верблюд, самое выносливое и неприхотливое домашнее жи­вотное пустыни, выносливое и неприхотливое домашнее животное

__________________

'Меяьчаков Л. Ф. Природоведение. Изд. 8. М., 1977. С. 116.

2Там же. С. 125, 129.

272

пустыни, домашнее животное пустыни, домашнее животное, животное(с.206).

3). Соболь, ценный пушной зверь, пушной зверь, зверь (с. 194).

Ограничение:

1). Птица, степная птица, редкая степная птица, редкая степ­ная птица высотой около метра (дрофа) (с. 198).

2). Сельскохозяйственная культура, древняя сельскохозяйст­венная культура, древняя русская сельскохозяйственная культу­ра, древняя русская волокнистая сельскохозяйственная культу­ра, лен (с. 194).

3). Участок суши, огромный участок суши, огромный уча­сток суши, окруженный со всех сторон океаном (т. е. материк).

Последние два понятия являются тождественными, поэтому понятие “материк” не является ограничением понятия “огромный участок суши, окруженный со всех сторон океаном”. Надо предос­терегать учащихся от возможной здесь ошибки, нередко встреча­ющейся при осуществлении операции ограничения понятия.

Учащимся начальных классов не просто даются готовые опре­деления понятий, а под руководством учителя они сознательно формируются. На примере формирования грамматических поня­тий у младших школьников проанализируем этот сложный, много­гранный аспект обучения. Мы воспользуемся интересным опы­том, отраженным в работе М. Р. Львова'. “Согласно программе в 1-III классах, - пишет М. Р. Львов, - школьники должны усвоить более ста языковых понятий, среди них грамматические: “пред­ложение”, “главный член предложения”, “подлежащее”, “сказуе­мое”, “второстепенный член предложения”, “слово”, “корень”, “суффикс”, “приставка”, “окончание”,...; понятия из области фо­нетики: “слоге, “звук”, “ударение”, “согласный звук”,... и др.; из области графики: “буква”, “алфавит”, “строчная буква”, “заглав­ная буква” и др.; из орфографии: “правописание”, “правило право­писания”, “проверочное слово” и др.; из лексикологии: “близкие по смыслу слова”, “противоположные по смыслу слова”, “перенос­ный смысл” и др.; из теории речи: “сочинение”, “рассказ”, “текст”, “тема”, “план” и др.

_____________________________

'Львов М.Р. Формирование грамматических понятий у младших школьни­ков. //Начальная школа. 1981. № 11. С. 23-27.

273

Большинство из этих понятий уже в начальных классах дос­тигают более или менее высокой степени сформированности”'. Трудная задача стоит перед учениками - усвоить за три первые года обучения более ста новых понятий, сложных, требующих кропотливой мыслительной деятельности. В указанной работе привлекает методический подход, состоящий в рассмотрении понятия не как готового, уже ставшего, т. е. не в статике, а в динамике, показ его в развитии, в обогащении новыми, сущест­венными признаками и функциями. С одной стороны, должны быть “точные и четкие определения”, и в начальных классах возможна “наиболее полная сформированность грамматического понятия” (например, “имя существительное”, “суффикс” и др.), с другой стороны, “некоторые языковые явления, широко исполь­зуемые в практической работе учащихся, все-таки не изучают­ся в обобщенном виде2. Такими, например, являются понятия:

“звук речи”, “местоимение”, “наречие”, “вид глагола”, “грам­матический род” и др. В статье М. Р. Львова четко выделяют­ся три последовательные этапа в формировании грамматических понятий в начальных классах, которые раскрываются на приме­ре формирования понятий “имя существительное” и “суффикс”:

“Первый подготовительный этап предполагает накопление эмпирического материала - наблюдение изучаемого явления, выделение и называние важнейших признаков и свойств этого явления, первичное обобщение накопленного эмпирического ма­териала, выделение главных, наиболее существенных признаков и свойств.

Второй этап предполагает научное оформление понятия: вве­дение термина, вывод определения понятия (или сообщение его учащимся в готовом виде), составление схем, моделей и т. п. Вывод определения обыкновенно состоит в подведении формиру­емого понятия под ближайший род (родовое понятие) и в выде­лении нескольких важнейших признаков3.

_______________________________

'Львов М.Р. Формирование грамматических понятий у младших школьни­ков. //Начальная школа. 1981. № 11. С. 23.

2Там же. С. 26.

3Например: “Суффикс - это часть слова (ближайший род), стоит после корня, служит для образования новых слов, вносит в слово новое значение” (см.: Русский язык. II класс. С. 53).

274

Третий этап - это дальнейшее углубление понятия, узнавание и выделение новых признаков, свойств изучаемого явления, кото­рые лежат в основе формируемого понятия... в школьном курсе количество новых свойств изучаемого явления всегда ограни­чено, конечно”'. В начальных классах далеко не все понятия в процессе их формирования проходят все три этапа; третий этап, а иногда и второй, могут осуществляться в последующих клас­сах средней школы.

Нам представляется, что вывод, сделанный М. Р. Львовым: “При всех различиях и самих понятий, и условий их формирования опи­санные три этапа могут быть обнаружены в каждом отдельном случае”2, можно распространить не только на формирование язы­ковых понятий, но и таких видов, как математические, биологичес­кие, физические, исторические и многие другие понятия.

Без четкого усвоения основных понятий любой науки и школь­ного учебного предмета, а также всей системы взаимосвязанных понятий конкретного предмета или науки учащимся трудно про­чно и глубоко овладеть основами наук.

Мы рекомендуем обратиться к работам Н. П. Конобеевского и В. А. Кирюшкина о развитии логического мышления уча­щихся 1 и 2 классов, указанных в списке литературы в конце учебника. Там даны интересные логические упражнения на ма­териале русского языка.

В школе логические операции нельзя рассматривать изолиро­ванно, особенно операцию определения понятия, ибо надо поня­тие подводить под ближайший род, и при этом произвести опе­рацию обобщения, а также выделить существенные признаки, характерные для вида. Этого же требует операция деления, при которой существенный признак является основанием деления. Умение правильно определять отношениемежду видом и ро­дом связано с умением находить разнообразные отношения ме­жду понятиями: подчинения, пересечения, тождества, соподчи­нения, противоположности, противоречия.

_______________________________

 

'Львов М.Р. Формирование грамматических понятий у младших школь­ников. //Начальная школа. 1981. № 11. С. 24.

2Там же.

 

 

Учащихся начальной школы надо специально обучать этим ло­гическим операциям с понятиями. Для эксперимента с учащимися третьего класса был подобран материал, состоящий их двух идентичных частей (наборов логических задач). Первая часть материала давалась без объяснения сущности операций над по­нятиями. После выполнения ее анализировались допущенные ошибки, приводились правильное решение и объяснение. Затем предлагалась вторая часть - контрольная. Проводилось срав­нение количества ошибок, допущенных в первой части и в конт­рольной. Работа состояла из следующих этапов:

1) учащимся предлагалось определить все виды отношений между понятиями (6 видов) ; в первый раз учащиеся допускали много ошибок, во второй раз значительно меньше;

2) успешно прошла работа по объединению (сложению) и пе­ресечению (умножению) объемов понятий;

3) было предложено провести операции ограничения и обоб­щения понятий (для понятий “растение” и “лодка”). Здесь все учащиеся допускали ошибки одного или двух видов: а) неполное ограничение; б) пропуск одного или ряда элементов при обобще­нии или ограничении (например, ограничивали так: “растение -клен”, пропустив понятие “дерево” и “лиственное дерево”);

4) при делении понятий “треугольник” и “член предложе­ния” допущены следующие ошибки: а) несоразмерность деле­ния; б) скачок в делении;

5) определение понятий “компас” и “остров”. Ошибок было много как в первом, так и в контрольном задании.

Эксперимент показал, что после объяснения учащиеся в кон­це 3 класса быстро усваивают отношения между понятиями, хорошо овладевают операциями объединения и пересечения по­нятий, что объясняется тем, что на уроках математики прихо­дится рассматривать множества и его элементы; сложной ока­зывается работа по обобщению и ограничению понятий.

Подобная же картина наблюдалась при экспериментах с уча­щимися 5-7 классов (в том числе с незрячими детьми) и с уча­щимися 9 класса. Эксперименты подтвердили, что учащиеся при разъяснении им логической теории по теме “Понятие” удовле­творительно справляются с такими логическими действиями с

276

понятиями, как деление понятий, определение, обобщение, огра­ничение понятий, и хорошо справляются с такими операциями с понятиями, как объединение, пересечение, дополнение, и вполне обоснованно находят отношения между понятиями.

– Конец работы –

Эта тема принадлежит разделу:

Конспект книги ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ С иных позиций изучает мышление логика

На сайте allrefs.net читайте: Конспект книги ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ С иных позиций изучает мышление логика. Она исследует мыш­ление как средство познания объективного мира, те его формы и. Конспект книги...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Развитие логического мышления младших школьников

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формы чувственного познания
Всякое познание начинается с живого созерцания, с ощуще­ний, чувственных восприятии. Предметы воздействуют на наши органы чувств и вызывают в них ощущения, которые восприни­маются мозгом. Других ср

Формы абстрактного мышления
Основными формами абстрактного мышления являются поня­тия, суждения и умозаключения. Понятие - форма мышления, в которой отражаются сущест­венные признаки одноэлементного класса или

Особенности абстрактного мышления
С помощью рационального (от лат. ratio - разум) мышления люди открывают законы мира, обнаруживают тенденции развития событий, анализируют общее и особенное в любом предмете, строят

Понятие логической формы
Логической формой конкретной мысли является строение этой мысли, т.е. способ связи ее составных частей. Логическая фор­ма отражает объективный мир, но это отражение не всей полно­ты содержания мира

Логические законы
Соблюдение законов логики - необходимое условие достиже­ния истины в процессе рассуждения. Основными формально-логи­ческими законами обычно считаются: 1) закон тождества; 2) за­кон непротиворечия,

Истинность мысли и формальная правильность рассуждений
Понятие истинности (ложности) относится лишь к конкрет­ному содержанию того или иного суждения. Если в суждении верно отражено то, что имеет место в действительности, то оно истинно, в противном сл

Теоретическое и практическое значение логики
Можно логично рассуждать, правильно строить свои умозаключения, опровергать доводы противника и не зная пра­вил логики, подобно тому, как нередко люди правильно говорят, не зная правил грамматики я

Семантические категории
Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым от­носятся: 1) предложени

Противоположность, противоречие
Соподчинение (координация) - это отношение между объема­ми двух или нескольких понятий, исключающих, друг друга, но при­надлежащих некоторому более общему (родовому) понятию (на­пример, “

Ошибки, возможные в определении
1. Определение должно быть соразмерным, т. е. объём определяющего понятия должен быть равен объему определяемого понятия. Dfd. = Dfп,. Это правило часто нару

Неявные определения
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется кон­текст, или набор аксиом, или описание способа построени

Определение через аксиомы
В современной математике и в математической логике широко применяется так называемый аксиоматический метод. Приведем пример2. Пусть дана система каких-то элементов (обозначаемых х, у,

Использование определений понятий в процессе обучения
Определение через род и видовое отличие и номинальное оп­ределение широко используются в процессе обучения. Приве­дем ряд примеров, взятых из школьных учебников. К определе­ниям через ближайший род

Приемы, сходные с определением понятий
Всем понятиям определение дать невозможно (к тому же этом нет необходимости), поэтому в науке и в процессе обучения используются другие способы введения понятий – приёмы, сходные с определен

Правила деления понятий
Правильное деление понятия предполагает соблюдение оп­ределенных правил: 1. Деление должно быть соразмерным, т. е. сумма объе­мов видовых понятий должна быть равна объему

И дихотомическое деление
Приведенные примеры деления понятия иллюстрировали деление по видообразующему признаку, когда основанием деления служит признак, по которому образуются видовые по­нятия. Примеры деления по в

Треска зазналась
В камзоле Баклажан Был полон блеска. На кухне утром он сказал Селедке: - Треска зазналась! Ишь как много треска Изволила поднять на сковор

Общая характеристика суждения
Суждение - форма мышления, в которой что-либо утвержда­ется или отрицается о существовании предметов, связях между пред­метом и его свойствами или об отношениях между предметами. Пр

Суждение и предложение
Понятия в языке выражаются одним словом или группой слов. Суждения выражаются в виде повествовательных пред­ложений, которые содержат сообщение, какую-то информацию. Например: “Светит яркое солнце”

Суждения с отношениями.
В них говорится об отношениях между предметами. Напри­мер: “Всякий протон тяжелее электрона”, “Французский писатель Виктор Гюго родился позднее французского писателя Стендаля”, “Отцы старше своих д

Распределенность терминов в категорических суждениях
Так как простое категорическое суждение состоит из терми­нов S и Р, которые, являясь понятиями, могут рассматриваться со стороны объема, то любое отношение между S и Р в простых сужде

Исчисление высказываний
Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:

Способы отрицания суждений
Два суждения называются отрицающими или противореча­щими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно лож­ными).

Отрицание сложных суждении
Чтобы получить отрицание сложных суждений, имеющих в сво­ем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъ­юнкцию и наобор

Исчисление высказываний
I. Символы исчисления высказываний состоят из знаков трех категорий: 1. а, b, с,d, е,f... и те же буквы с индексами а1 ,а2 ,...

Выражение логических связок (логических постоянных) в естественном языке
В мышлении мы оперируем не только простыми, но и сложны­ми суждениями, образуемыми из простых посредством логичес­ких связок (или операций) - конъюнкции, дизъюнкции, имплика­ции, эквиваленции, отри

Отношения между суждениями по значениям истинности
Суждения, как и понятия, делятся на сравнимые (имеют об­щи субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые. В математической логике два выска

Б. Деление суждений по модальности
В логике мы до сих пор рассматривали простые суждения, которые называются ассерторическими, а также составленные из   простых сложные суждения. В них утверждается и

Закон тождества
Этот закон формулируется так: “В процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе”. В математической логике закон тождества выражаетс

Закон непротиворечия
Если предмет А обладает определенным свойством, то в суж­дениях об А люди должны утверждать это свойство, а не отрицать его. Если же человек, утверждая что-либо, отрицает то же самое

Закон исключенного третьего
Онтологическим аналогом этого закона является то, что в предмете указанный признак присутствует или его нет, поэтому и в мышлении мы отражаем это обстоятельство в виде закона исключенного третьего.

Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
Как уже отмечалось, объективными предпосылками дейст­вия в мышлении закона непротиворечия и исключенного третьего являются наличие в природе, обществе (и самом мышлении) ус­тойчивых состояний у пре

Закон достаточного основания
Этот закон формулируется так: “Всякая истинная мысль дол­жна быть достаточно обоснованной”. Речь идет об обоснова­нии только истинных мыслей: ложные мысли обосновать нельзя, и нечего пытатьс

Общее понятие об умозаключении
Умозаключения, как и понятия и суждения, являются формой аб­страктного мышления. С помощью многообразных видов умозак­лючений опосредованно (т. е. не обращаясь к органам чувств) мы можем получать н

Понятие логического следования
Выведение следствий из данных посылок - широко распрост­раненная логическая операция. Как известно, условиями истинно­сти заключения является истинность посылок и логическая пра­вильность вывода. И

Дедуктивные умозаключения
В определении дедукции в логике выявляются два подхода: 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности i к новому

Понятие правила вывода
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила выво­да, или правила преобразования суждений, позволяют перехо­дить от посылок (суждений) о

Фигуры и модусы категорического силлогизма
Фигурами категорического силлогизма называются фор­мы силлогизма, различаемые по положению среднего термина (М) в посылках. Различают четыре фигуры:

Правила категорического силлогизма
Категорические силлогизмы в мышлении встречаются весь­ма часто. Для того чтобы получить истинное заключение, необхо­димо брать истинные посылки и соблюдать нижеперечисленные правила категорического

Формализация эпихейрем с общими посылками
Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют со­бой сокращенные простые категорические силлогизмы (энтимемы). С

Условные умозаключения
Чисто условным умозаключением называется такое опосредст­вованное умозаключение, в котором обе посылки являются услов­ными суждениями. Условным называется суждение, имеющее структуру: “Если

II. Отрицающий модус (modus tollens).
Структура его: Схема:   Если а,то а→b Не-b Не-а ā Формула ((а 

Первый вероятностный модус
Рассмотрим первый модус, не дающий достоверного заключе­ния. Структура его: Cхема:   Если а, то b. a→b b b ___________

Второй вероятностный модус
Это второй модус, не дающий достоверного заключения. Структура его: Схема: Если а, то b. а →b Не-а ā Вероят

Трилемма
Трилеммы так же, как и дилеммы, могут быть конструктив­ными и деструктивными; каждая из этих форм в свою очередь может быть простой или сложной. Простоя конструктивная трилемма состоит из дв

В умозаключении пропущена одна из посылок
В умозаключениях может быть пропущена первая посылка, она может подразумеваться, если выражает какое-то истинное суждение, формулирующее известное положение, теорему, за­кон и т. д. В усло

Простая контрапозиция.
    Правило простой контрапозиции имеет следующ

Сложная контрапозиция.
- правило сложной контрапозиции. ((a ^ b) → с) ((а

Рассуждение по правилу введения импликации
Правило вывода сформулировано так:    

Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истин­ных посылок при соблюдении соответствующих правил истин­ные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдо

Виды неполной индукции
Неполная индукция применяется в тех случаях, когда мы, во-первых, не можем рассмотреть все элементы интересую­щего нас класса явлений; во-вторых, если число объектов либо бесконечно, либо конечно,

Понятие вероятности
Различают два вида понятия “вероятность” - объективную вероятность и субъективную вероятность. Объективная вероят­ность - понятие, характеризующее количественную меру воз­можности появления

Методы установления причинной связи
Причинная связь между явлениями определяется посредст­вом ряда методов, (описание и классификация которых восхо­дит еще к ф. Бэкону и которые были развиты Дж. Ст. Миллем. _________________

Дедукция и индукция в учебном процессе
Как в любых процессах познания (научногоили обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. Ф. Энгельс писал: “Индукция и дедукция связаны между собой столь же необходимым

Виды аргументов
Различают несколько видов аргументов: 1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данны

Опровержение тезиса (прямое и косвенное)
Опровержение тезиса осуществляется с помощью следую­щих трех способов (первый - прямой способ, второй и третий -косвенные способы). 1. Опровержение фактами - самый верный

III. Выявление несостоятельности демонстрации
Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует и

Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису

Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”).В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непред

Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводи­мых в его подтверждение аргументов, то возникает ошибка, назы­ваемая “не вытекает”, “не следует”. Люди иногда вместо пра­виль

Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключе­ние от утверждения следствия к утверждению основания. Так, из посылок “Если ч

Понятие о софизмах и логических парадоксах
Непреднамеренная ошибка, допущенная человеком в мышле­нии, называется паралогизмом. Паралогизмы допускают мно­гие люди. Преднамеренная ошибка с целью запутать своего противника и выдать ложн

Понятие о логических парадоксах
Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) до­казывающее как это суждение, так и его отрицание. Парадоксы ___

Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нор­мальных множеств (нормальным множеством называется мно­жество, не содержащее се

Строгая аналогия
Характерным отличительным признаком строгой аналогии яв­ляется наличие необходимой связи между сходными признака­ми и переносимым признаком. Схема строгой аналогии такая: Предмет A

Нестрогая аналогия
В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суж­дение обозначить через 0, а истину через 1, то степень вероятности выводов по нест

Ложная аналогия
При нарушении указанных выше правил аналогия может дать ложное заключение, т. е. стать ложной. Вероятность заключения по ложной аналогии равна 0. Ложные аналогии иногда делаются умышленно, с целью

Виды гипотез
В зависимости от степени общности научные гипотезы мож­но разделить на общие, частные и единичные. Общая гипотеза - это научно обоснованное предположе­ние о законах и закономерностя

Построение гипотез
Путь построения и подтверждения гипотез проходит через несколько этапов. Разные авторы выделяют от 2 до 5 этапов, мы выделим 5. Эти этапы преподаватель может проиллюст­рировать, например, ходом пос

Логическая структура и виды ответов
1. Ответы на простые вопросы. Ответ на простой вопрос первого вида (уточняющий, определенный, прямой, “ли”-вопрос) предполагает одно из двух: “да” или “нет”. Например: “Является ли

К. Д. Ушинский и В. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
Большое значение в процессе обучения придавал логике чеш­ский педагог Я. А. Коменский. Он предлагал знакомить уча­щихся с краткими правилами умозаключений, подкреплять их яркими жизненными примерам

Развитие логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и суть их доказательств, изу

Развитие логического мышления на уроках истории
При изучении материала по истории применяются различные приемы, способствующие развитию мышления, в первую оче­редь наглядные пособия: картины, диапозитивы, иллюстрации учебника. Большое м

Контрольные работы
Контрольная работа по курсу логики по темам “Понятие” и “Суждение” Вариант 1 1. Определить вид следующих понятий: капиталист, остров, кодекс, созвездие Большая медве

Ответы на кроссворд
По горизонтали: 1. Общеутвердительное. 2. Умозаключе­ние. 3. Изоморфизм. 4. Понятие. 5.Имя. 6. Абстрагирование. 7. Моделирование. 8. Тождественные. По вертикали: 1. Индукция.

Кроссворд
    П 2 По горизонтали:

Ответы на кроссворд
По горизонтали: 5. Пугало. 6. Редька. 11. Перчатка. 12. Ка­рандаш. 13. Солнце. 15. Волосы. 19. Глаза. 20. Терка. 21. Якорь. 23. Заяц. 24. Гусь. 25. Пчелы. По вертикали: 1. Ст

Логика в Древней Индии
История логики Индии связана с развитием индийской фило­софии. Древнейший литературный памятник Индии - Веды (II-начало I тысячелетия до н.э.), а наиболее древняя ее часть - Ригведа. С целью разъяс

Логика Древнего Китая
Под логикой Древнего Китая, по утверждению Пань Шимо, принято понимать прежде всего логику периода Чуньцю и Чжаньго (722-221 до н. э.), когда появляется понятие “философская дис­куссия” и создается

Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской шко­ле (у Парменида и Зенона). Гераклит Эфесский выступает с уче­нием о всеобщем движе

Логика в средние века
Средневековая логика (VI-XV вв.) изучена еще недостаточ­но. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые ре

Логика в России
Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций. Первый трактат по логике появ

Математическая логика
В XIX в. появляется математическая логика. Немецкий фило­соф Г. В. Лейбниц (1646-1716) - величайший математик и круп­нейший философ XVII в. - по праву считается ее основопо­ложником, Лейбниц пыталс

Конструктивная логика А. А. Маркова
Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков. В основе конст­руктивной математической

Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказыва­ний) была построена в 1920 г. польским математиком и логи­ком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначает­ся 1, “ложь” - 0, “нейтра

Отрицание Лукасевича
  х Nx 1/2 1/2

Отрицание Гейтинга
x Nx ½

ЗАКЛЮЧЕНИЕ
Цель познания в науке и повседневной жизни - получение ис­тинных знаний и полноценное использование их на практике. Зна­ние формальной логики и диалектики помогает предвидеть собы­тия и лучшим спос

Понятие.
2.1.0. Как, по-Вашему; называется форма мышления, которая | является результатом обобщения предметов по ряду существен­ных признаков? 2.1.1. Суждение. 2.1.2. Понятие. 2.1

Логические основы теории аргументации.
5.1.0. Какую, по-вашему, структуру имеет доказательство как логическая операция? - Оно имеет следующую структуру: 5.1.1. Тезис, аргументы, демонстрация. 5.1.2. Посылка, заключение

СПИСОК СИМВОЛОВ
а ^b; а * b; а &b; “а и b” - конъюнкция. a b; “а или b” - нестрогая дизъюнкция. a

В польской символике
Nx - отрицание х. Сху - импликация (х имплицирует y). Кху - конъюнкция х и у. Аху - нестрогая дизъюнкция

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги