рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Виды определений

Виды определений - Лекция, раздел Философия, Логика Определения Классифицируются По Разным Основаниям. По Способу Представления О...

Определения классифицируются по разным основаниям. По способу представления определяемого имени они подразделяются на явные и неявные. Явным называется определение, в котором определяемое имя синтаксически совпадает с Dfd и непосредственно приравнивается к значению Dfn. Например, определение, выраженное предложением «Вершок – древняя мера длины, равная 4,4 см» является явным. Другие примеры: «Тело геометрическое – любая ограниченная часть пространства вместе с ее границей»; «Суд – орган государства, рассматривающий уголовные и гражданские дела в соответствии с установленными процессуальными правилами»; «Озон – О3».

Среди явных определений особое место принадлежит классическому определению. Оно строится по схеме: «A есть B и C», где A – Dfd, B и C – Dfn, «есть» – дефинитивная связка. При этом B является родовым именем по отношению к A, а C фиксирует отличительный признак, которым A выделяется среди видов, подчиненных B. Поэтому классическое определение называют также определением через род и видовое отличие. «Вершок – древняя мера длины, равная 4,4 см» – пример классического определения (впрочем, другие, приведенные выше, – тоже). В нем «древняя мера длины» – родовое имя, а словосочетание «равная 4,4 см» обозначает признак, которым вершок отличается от любой другой древней меры длины.

Классическое определение обстоятельно исследовано уже Аристотелем. В течение многих столетий оно считалось едва ли не единственно возможным. В силу своей простоты и удобства оно не потеряло практического значения до наших дней.

Близкими классическим являются генетические (или индуктивные – в другой терминологии) определения, описывающие предметы в соответствии со способами их образования, возникновения, построения: «Круг – это фигура, образованная движением на плоскости отрезка прямой ОМ вокруг неподвижной точки О». В ряде случаев генетические определения являются более удобными и эффективными, чем классические, и, как правило, исторически предшествуют им. Не зная о многих существенных свойствах железа, используемых в современных классических определениях, люди давно применяли рецепты по его получению из болотной руды и, тем самым, отличали от других материалов.

Однако не всякому имени определение дается в явном виде. В частности, многие математические понятия не определяются явно. Например, чтобы определить понятие логарифма, используют предложение: «Логарифм данного числа N при основании а есть показатель степени у, в которую нужно возвести а, чтобы получить N». Здесь имя «логарифм» определяется не само по себе, а неявно, через контекст его использования, т.е. через словосочетание «логарифм данного числа N при основании а», в котором определяемое имя выступает в качестве его части. Такого рода неявные определения называются контекстуальными.

В других случаях имена определяются с помощью множества аксиом, систем уравнений и т.д. Так, уравнение 2х + 1 = 7 неявно определяет число 3.

С точки зрения выполняемых функций определения можно разделить на регистрирующие, постулирующие и уточняющие. Регистрирующее определение указывает на значение, которое уже имеет определяемое выражение в некотором языке. Например, «Слепой – человек, лишенный зрения», «Холостяк – неженатый мужчина», «Градус – единица измерения углов и дуг, равная 1/360 окружности».

Постулирующее определение устанавливает значение некоторого выражения на будущее. Так, с некоторых пор цветными металлами в промышленности стали называть все металлы и их сплавы, за исключением железа и его сплавов. Это определение, очевидно, не вполне строгое с научной точки зрения, надежно служит практике и в наши дни. Особое значение постулирующие определения имеют в системах развивающегося знания, осваивающих новые сферы действительности и в связи с этим испытывающих потребности в разработке соответствующей терминологии.

Между регистрирующими и постулирующими определениями промежуточное место занимают уточняющие определения, предназначение которых заключается в замене неточных имен на точные. Необходимость такой замены постоянно возникает в самых разнообразных сферах деятельности человека – в развитии науки, в процессах обсуждения и решения практических вопросов и т.д. Например, мы часто слышим и используем слово «юноша», и в процессах общения обычно оно не вызывает особых неудобств. Но бывают ситуации, требующие его уточнения. Вряд ли можно провести на высоком уровне соревнования среди юношей по боксу, если не договориться считать юношами людей мужского пола в возрасте, скажем, от 16 до 18 лет.

– Конец работы –

Эта тема принадлежит разделу:

Логика

Логика.. Курс лекций е издание стереотипное..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Виды определений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

У.Томсон, лорд Кельвин
Главная дидактическая цель данного учебного пособия состоит прежде всего в том, чтобы вооружить студента знаниями, которые позволили бы: а) лучше ориентироваться в функциях, выполняемых различны

Определение логики как науки. Понятие схемы (логической формы) мысли.
Хотя логика (от греч. logos – слово, понятие, рассуждение, разум) как наука существует около двух с половиной тысяч лет – ее основателем считается великий древнегреческий мыслитель Аристотель (384-

Правильные рассуждения
Теперь приступим к рассмотрению второго вопроса. Есть три разновидности схем рассуждений. Прежде всего, существуют схемы, которым присуще такое свойство: каким бы содержанием мы их ни напо

Правильность и истинность мысли. Ошибки в мышлении
Обычно правильность отличают от истинности мышления. Понятие истинности характеризует мышление в его отношении к действительности: уже Аристотель считал, что мысль истинна, если он

Знаешь ли ты этого покрытого человека? Нет. Это твой отец. Следовательно, ты не знаешь своего отца».
Насколько трудно бывает обнаружить ошибку в софистическом рассуждении, видно на примере первого из приведенных софизмов, известного под названием «Рогатый». В нём видимость логической правильности

Логическая культура
Известный немецкий философ Г.В.Ф.Гегель (1770-1831) как-то заметил, что логика не учит мыслить, так же как физиология и анатомия не учат переваривать пищу и двигаться. Однако эту мысль великого мыс

Логические союзы: определения
Логическая теория высказываний является наиболее простой и, в то же время, фундаментальной частью логики. В ней под высказыванием понимается языковое выражение, о котором м

Логические союзы и естественный язык
Содержание логических союзов, фиксируемое уже знакомыми нам определениями, составляет «глубинное ядро» грамматических союзов, которые используются при речевом оформлении наших мыслей. Но кроме этог

Законы логики высказываний
Выше было сказано, что закон логики – это схема (логическая форма), которой присуще следующее свойство: каким бы содержанием мы ее ни наполняли, в результате получим верное, правильное рассуждение.

Oslash;(A Ù B) « (ØA Ú ØB).
  С увеличением числа переменных табличный метод становится малопригодным, поскольку быстро возрастает число строк в таблице, исчисляемых по формуле S = 2n, где S –

Достаточные и необходимые условия
Достаточным условием некоторого события называется условие, наличие которого гарантирует осуществление этого событий. На языке логики высказываний достаточность услов

Принцип достаточного основания
На заре Нового времени французский философ и математик Р.Декарт сформулировал принцип, оказавший революционизирующее влияние едва ли не на все сферы человеческой жизни. Это принцип универсального с

Причина и следствие
Важным видом связей, существующих в природе и обществе, являются причинные связи, т.е. связи причин и вызываемых ими эффектов. Под причиной F эффекта (явления, события, дейс

Ошибки при анализе детерминации
Одна из таких ошибок называется «недостаточное основание». Данная ошибка — результат нарушения требований принципа достаточного основания, в соответствии с которыми для прин

Понятие имени
Имя - выражение языка, обозначающее предмет или множество, совокупность предметов. При этом термин «предмет» понимается в самом широком, обобщенном смысле. Предметы –

Отношения между именами
В зависимости от специфики отношений между содержаниями и объемами имен выделяется несколько видов отношений между ними. Имена являются сравнимыми между собой, если и

Обобщение и ограничение
В наиболее простых случаях операции обобщения и ограничения можно охарактеризовать следующим образом. Обобщение объема A – логическая операция, в результате которой образуется имя

Понятие деления
В процессе практической и теоретической деятельности перед нами нередко встает задача более глубокого рассмотрения и понимания некоторого имени, систематизации обозначаемых им предметов. Например,

Правила деления
В учебниках логики обычно излагаются лишь правила таксономического деления. Но есть попытки распространить их и на мереологическое деление[4]. Сформулируем эти правила. 1. Прави

Реальные и номинальные определения
В научной литературе термин «определение» употребляется в разных смыслах. В грамматике, например, определение – это второстепенный член предложения, отвечающий на вопрос «какой», «который», «чей».

Правила определения
Определение достигает своих целей лишь при выполнении соответствующих правил. Сформулируем важнейшие из них. 1. Правило соразмерности. Dfd и Dfn должны быть равнообъе

Правила дедуктивных выводов в логике высказываний
С помощью правил вывода устанавливается зависимость логической структуры заключения от логической структуры посылок. В простейшем случае правило вывода можно записать в виде схемы, которая состоит

A Ù B
Это простое правило устанавливает, что два принятых за истинные высказывания можно соединить знаком конъюнкции, и полученное сложное высказывание также разрешается принять. Например: Подул

A Ú B A Ú B
Правилом ВД устанавливается, что из принятого за истинное высказывания со структурой A (соответственно B) можно выводить дизъюнктивное высказывание вида A Ú B.

Непрямые (косвенные) правила выводов
Теперь перейдем к рассмотрению основных косвенных (непрямых) правил. Напомним, что ими устанавливается следующее: если могут быть построены такие-то и такие-то выводы, то может быть построен и тако

Структура и виды атрибутивных высказываний
Логическая теория имен находит применение в разделе логики, которой называется силлогистикой (от греч. Sillogistikos – выводящий умозаключение). Ее основные понятия были раз

Распределенность терминов в атрибутивном высказывании
Для правильного оперирования высказываниями вида SaP, SeP, SiР, SoP в процессе проведения логических операций важное значение имеет вопрос о распределенности терминов (субъекта и предиката).

Простой категорический силлогизм
Вывод, в котором заключение получается из двух или более посылок, называется опосредованным. Важнейшей формой опосредованного вывода является простой категори

Основные правила простого категорического силлогизма
  Обобщение самых разнообразных отношений между терминами в традиционной логике дало возможность сформулироватьосновные правила простого категорического силлогизма. В

Из двух отрицательных посылок нельзя делать заключения.
6. Если одна из посылок отрицательная, то и заключение должно быть отрицательным. Проверка правильности рассуждений может быть упрощена с помощью фигур простого катего

Сложные и сокращенные силлогизмы
В процессах рассуждений простые силлогизмы выступают, как правило, в логических связях друг с другом, образуя цепи или «деревья» силлогизмов. Цепь силлогизмов, упорядоченных таким образо

B ØA
Это уже знакомые нам правила выводов логики высказываний – правило удаления импликации (УИ) и modus tollens. Стало быть, первоначально мы имели дело со схемами, соответствующими определению редукци

Все S суть P
Пример: Медь – хороший проводник электричества. Алюминий – хороший проводник электричества. Железо – хороший проводник электричества. Свинец – х

Условия правомерности правдоподобных выводов
Истинность заключения в правдоподобных выводах может иметь разную степень вероятности. В отдельных случаях (при полной индукции, отношениях изоморфизма и гомоморфизма в выводах по аналогии и др.) о

Слишком далекая аналогия
Название этой ошибки подсказывает, что она характерна для выводов по аналогии. Вероятность ее появления тем выше, чем более разнородны предметы, выступающие в качестве модели и прототипа. Эта ошибк

Поспешное обобщение
Эта ошибка свойственна индуктивным выводам. Она допускается, когда признак, присущий лишь части предметов, переносится на все предметы рассматриваемого класса. Например, долгое время европейцы были

Точки зрения
Точки зрения участвующих в деловом диалоге сторон должны соотноситься с обсуждаемым вопросом и быть не чем иным, как предполагаемыми ответами на него. Основное предназначение всякого ответ

Аргументация
Точки зрения,решения по обсуждаемому вопросу, отдельные высказывания могут приниматься или не приниматься, подвергаться сомнению или находить горячую поддержку в зависимости от того, насколько обст

Итоги делового диалога. Логика принятия решений
В идеале целью делового диалога является нахождение исчерпывающего решения по обсуждаемому вопросу, т.е. выбор той точки зрения, которая является единственно истинной и недвусмысленно, прямо отвеча

Общие правила
Продуктивный диалог требует соблюдения определенных условий и правил, с помощью которых интеллектуальные способности участвующих координируются и направляются для кооперативного разрешения обсуждае

Правила выдвижения точек зрения
Зная правила постановки вопросов и их связи с ответами, нетрудно сформулировать условия, каким должен удовлетворять доброкачественный ответ, точка зрения, тем более, что многое из того, что сказано

Правила по отношению к тезису аргументации
В процессе развития диалога, ответ, становясь тезисом аргументации (точкой зрения, позицией участника дискуссии), как бы отрывается от породившего его вопроса и приобретает некоторые специфические

Правила по отношению к доводам
1. В доказательствах, опровержениях, подтверждениях, возражениях доводы должны быть истинными высказываниями. Нарушение этого требования связано с логическими ошибками двояк

Правила по отношению к демонстрации
По отношению к демонстрации должно выполняться следующее требование - соблюдение логических правил, характерных для той или иной разновидности аргументации. Так, демонстраци

Эристические уловки. Софистика и сократовская диалектика
Слово «эристика» генетически связано с именем богини Эриды, весьма противоречивой персоны в древнегреческой мифологии. Согласно Гесиоду, она, с одной стороны, - прародительница человеческого труда,

Достаточные и необходимые условия. Причинно-следственные отношения
1. а) Достаточно в водном растворе лакмуса присутствия кислоты для приобретения им красного цвета, б) При наличии в водном растворе лакмуса кислоты необходимо его окрашивание в красный цвет.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги