рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Системы при последовательном соединении

Системы при последовательном соединении - раздел Образование, РАБОТЫ ТРУБОПРОВОДНЫХ СИСТЕМ   Последовательное Соединение— Это Такое С...

 

Последовательное соединение— это такое соединение, при котором два элемента имеют одну общую точку, причем конец первого элемента соединен с началом второго, а расход из одного элемента полностью поступает во второй (рисунок 3.1).

Вначале рассмотрим принципы выполнения сложения характеристик для наиболее простого варианта: последовательного соединения двух элементов сети трубопроводов.

 

а) схема соединения б) расчетные соотношения

           
 
   
 
   
 

 

 


в) графическое сложение характеристик

Р

 


Рисунок 3.1 – Сложение характеристик двух элементов трубопровод-

ной сети при последовательном соединении

Из условия неразрывности потока в точке соединения участков Х следует, что расходы через оба участка одинаковы и равны общему расходу через эквивалент соединения. Общие потери давления равны сумме потерь давления на каждом из участков (равенства 3.1).

Как следует из (3.1), для сложения характеристик последовательно соединенных участков необходимо при некотором постоянном расходе сложить потери давления на участках. Графическая иллюстрация сложения характеристик при последовательном соединении приведена на рисунке 3.1в. Для выполнения сложения следует произвольно задаться некоторым значением расхода, и провести вспомогательную вертикальную линию, соответствующую этому значению расхода. Точки пересечения этой лини и характеристик участков 1 и 2 показывают рабочие режимы участков при выбранном расходе, а отрезки от оси абсцисс до рабочих точек – значения потерь давления в каждом из участков. На вспомогательной вертикальной линии следует сложить полученные значения отрезков и поставить новую точку, которая и будет принадлежать искомой линии 1+2.

Данную процедуру следует выполнить несколько раз, построив несколько точек (4–5 точек), а затем через построенные точки провести плавную кривую – это и будет графическая характеристика эквивалента последовательно соединенных участков 1 и 2.

Следует отметить, что наиболее удобно выполнять графическое сложение на разлинованной бумаге тетрадей или миллиметровке – тогда не требуется проводить вспомогательную линию расходов. Складывать отрезки наиболее быстро и удобно при помощи циркуля или измерителя, чтобы не отсчитывать длины отрезков по линейке, или не считать клетки в тетради.

Порядок сложения отрезков не имеет значения (от перемены мест слагаемых сумма не меняется), однако мы рекомендуем к большему давлению прибавлять меньшее, чтобы не запутаться.

Если одна из линий пересекает ось абсцисс, то при этом значении расхода потери давления равны 0, и сложение производить не требуется – достаточно просто поставить точку на линии другого участка при том же значении расхода. Такие «контрольные точки» строятся очень быстро, и рекомендуется вначале строить именно их, чтобы определиться с общим направление итоговой линии и избежать грубых ошибок при построении остальных точек. Для участков трубопровода парабола характеристики проходит через 0, поэтому и итоговая парабола тоже пройдет через 0.

Обращаем внимание, что не имеет значения, какие по форме линии складывать – сама технология сложения остается той же самой. Точно так же, не имеет значения количество участков – просто увеличивается количество слагаемых. При этом несколько участков можно сложить за одно действие, а можно последовательно к предыдущему результату прибавлять очередной участок.

Все соображения, изложенные выше с полным правом можно отнести к сложению характеристик в системе координат Н–Q, которая чаще всего применяется при расчете режимов насосных систем.

Рассмотрим участок гидравлической системы с перепадом отметок (рисунок 3.2а), причем конец участка расположен выше, чем его начало. Требуется графически построить эквивалент такого соединения.

 

а) схема соединения б) расчетные соотношения

       
 
   
 

 


в) графическое сложение характеристик

 


Рисунок 3.2 – Сложение характеристик трубопровода и гидростати-

ческого напора при последовательном соединении

 

В данном случае гидростатический напор действует навстречу движению потока, поэтому он, как и потери в трубопроводе, препятствует движению. Смысл преодоления его заключается в том, что внешнему источнику энергии придется дополнительно поднять жидкость на высоту h. При этом уравнение характеристики сети будет

Н = H1 + h (3.2)

Н = А Q2 + h (3.2а)

 

Насосу придется преодолевать потери в трубопроводе и дополнительно затрачивать энергию на подъем жидкости. Таким образом, мы имеем последовательное соединение участка трубопровода и гидростатического напора. Из (3.2а) следует, что даже при бесконечно малом расходе нагнетателю придется развивать напор, не меньше чем h, чтобы жидкость смогла подняться до верха трубы, в противном случае расход в системе будет равен 0.

Сложение характеристики участка и линии гидростатического напора принципиально ничем не отличается от рассмотренного ранее сложения характеристик участков, просто вместо одной из парабол складываем горизонтальную линию постоянного статического напора. При этом построении каждая точка характеристики участка 1 поднимается вверх на одно и тоже расстояние, соответствующее длине отрезка напора h.

Если конец участка 1 будет ниже, чем его начало, то перепад отметок будет, наоборот, помогать движению воды (рисунок 3.3а). Все расчетные соотношения остаются справедливыми и в этом случае, просто следует учитывать отрицательный знак действия гидростатического напора

В этом случае гидростатический напор действует в направлении движения потока и поэтому помогает, а не препятствует движению. Жидкость, опускаясь вниз, отдает системе запасенную ранее потенциальную энергию, поэтому внешнему источнику энергии (насосу) потребуется развивать напор меньше, чем потери в трубопроводе Н1, на величину перепада отметок h. При этом уравнение характеристики сети будет

 

Н = H1 – h (3.4)

Н = А Q2 – h (3.4а)

 

И в этом случае мы имеем последовательное соединение участка трубопровода и гидростатического напора, однако теперь следует производить вычитание напора h из характеристики трубопровода Н1. Учитывая, что в математике сложение и вычитание в общем случае называются алгебраическим сложением, мы также далее не будем выделять вычитание характеристик в отдельное действие, а будем говорить о сложении характеристик с учетом знака.

Технически процедура вычитания производится точно так же, как рассмотренные выше операции сложения, просто вычитаемый отрезок откладывается на графике вниз, в сторону отрицательных напоров (или давлений).


а) схема соединения б) расчетные соотношения

       
   
 
 

 


б) графическое вычитание характеристик

 


Рисунок 3.3 – Вычитание гидростатического напора из характерис-

стики трубопровода сети при последовательном

соединении

 

Правильный выбор знака гидростатического напора очень важнен, так как ошибка в этом вопросе является грубым промахом и не позволяет получить правильный ответ. Если речь идет о сложении характеристик элементов трубопроводной сети, для которой подсчитываются затраты энергии, то подъем трубопровода по ходу движения жидкости всегда учитывается со знаком «плюс», так как при подъеме энергия затрачивается, как и в самом трубопроводе. Опуск трубопровода, соответственно, учитывается со знаком «минус».

В нагнетательной установке, для которой подсчитываются запасы энергии в системе, все наоборот: подъем трубопровода по ходу движения жидкости всегда учитывается со знаком «минус», а опуск трубопровода – со знаком «плюс».

Теперь разберем случай, кода последовательно включены два нагнетателя, например, два вентилятора (рисунок 3.4)

 

 

а) схема соединения б) расчетные соотношения

           
 
   
   
 
 

 

 


в) графическое сложение характеристик

 


Рисунок 3.4 – Сложение характеристик двух вентиляторов при

последовательном соединении


Процедура сложения выполняется точно так же, как и для двух участков трубопроводов, различие заключается только в форме складываемых характеристик. Чаще всего достаточно сложить характеристики в пределах первого квадранта, при положительных значениях расходов и давлений. При необходимости складывать в области других квадрантов следует обращать внимание на знаки давлений при принятом значении расхода. Так, при расходе QХ давление вентилятора а равно нулю, поэтому суммарное давление равно давлению вентилятора б. При больших расходах давления вентиляторов становятся отрицательными, и линия суммарной характеристики уходит в IV квадрант в зону отрицательных давлений.

Форма характеристик нагнетателей не принципиальна, однако желательно, чтобы оба вентилятора (или насоса) были рассчитаны на работу в одном диапазоне расходов, в противном случае вентилятор с большим расчетным расходом может передавливать вентилятор с меньшим расходом, который превращается в дополнительное сопротивление движению потока. Ясно, что такой режим не является нормальным. Кроме того, характеристика нагнетателей в зоне IV квадранта при отрицательных давлениях обычно неизвестна, поэтому точно построить итоговую характеристику не представляется возможным.

Наконец, разберем случай, кода последовательно включены вентилятор и участок воздуховода (рисунок 3.5)

Если все соединение относить к нагнетательной установке, то давления вентилятора следует учитывать с положительным знаком, а потери давления в воздуховоде – с отрицательным. Таким образом, следует вычитать из характеристики вентилятора характеристику воздуховода.

Процедура вычитания осуществляется откладыванием потерь давления в воздуховоде вниз от характеристики вентилятора. В точке пересечения характеристик давление вентилятора равно потерям давления в воздуховоде, поэтому результирующее суммарное давление равно нулю. В зоне больших расходов потери давления в воздуховоде превышают давление вентилятора, поэтому линия суммарной характеристики уходит в IV квадрант в зону отрицательных давлений. В зоне II квадранта потери давления в воздуховоде имеют отрицательное значение, поэтому в результате вычитания с учетом знака линия итоговой характеристики соединения в зоне II квадранта располагается выше характеристики вентилятора.


а) схема соединения б) расчетные соотношения

 

       
 
   
 

 

 


в) графическое сложение характеристик

 

 


Рисунок 3.5 – Вычитание характеристики воздуховода из характери-

стики вентилятора при последовательном соединении

 

 


– Конец работы –

Эта тема принадлежит разделу:

РАБОТЫ ТРУБОПРОВОДНЫХ СИСТЕМ

Государственное образовательное учреждение... высшего профессионального образования Тихоокеанский государственный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Системы при последовательном соединении

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Некоторые термины и понятия
  Трубопроводная система предназначена для перемещения на определенное расстояние некоторой транспортируемой среды, которой чаще всего является вода или воздух

Конструктивные характеристики трубопроводных систем
  Трубопроводная сеть состоит из отдельных трубопроводов, каждый из которых может иметь свои индивидуальные характеристики. Рассмотри основные характеристики трубопроводов. &

Характеристики перемещаемой среды
  Характеристики перемещаемой среды имеют важное значение для расчета гидравлического режима системы. К ним относятся плотность и вязкость

Режимные параметры трубопроводных систем
  Основными параметрами работы любой трубопроводной системы или ее отдельного элемента являются, расход, скорость среды, давление или напор, потери напора, потребляемая мощ

Потери давления и напора в трубопроводе
  Как указывалось выше, при движении жидкости по трубопроводу энергия потока, то есть его давление или напор, уменьшается, в итоге потерянная механическая энергия потока переходит в т

Понятие характеристик трубопровода и нагнетателя
  Как ясно из изложенного выше, потери давления в неком участке трубопровода зависят от расхода, характеристик трубопровода и перемещаемой среды. Зависимость потерь давления

Разбиение системы на нагнетатель и сеть.
  Реальная трубопроводная система может состоять из большого числа отдельных элементов, однако при расчетах и анализах ее работы часто удобнее представить ее состоящей всего из двух у

Уравнения балансов среды и энергии в системе
  Многие технические задачи решаются на основе составления балансных уравнений. Слово «баланс» означает «равенство», «равновесие» неких движущих сил или параметров процесса и сил и па

Графический метод наложения характеристик
  Наличие балансов среды и энергии в системе позволяют получить систему из двух уравнений, которую можно решить относительно р

Причины необходимости сложения характеристик
Как ясно из предыдущего раздела, для нахождения рабочего режима системы по методу наложения характеристик требуется рассматривать систему как состоящую только из двух элементов — нагнетательной уст

Параллельном соединении
Параллельное соединение—это такое соединение, при котором два элемента имеют две общих точки, при этом начало первого элемента соединено с началом второго, конец первого элемен

Логарифмической системе координат
  Логарифмическая система координат очень часто используется для отображения гидравлических характеристик вентиляторов и элементов вентиляционных сетей – решеток, воздухораспределител

Аналитическое сложение характеристик трубопроводов
  Во многих случаях при расчетах систем требуется определить итоговую характеристику сети, состоящей из нескольких участков трубопровода или нескольких единиц оборудования. Если извес

Характеристик
  При нахождении режимов трубопроводных систем рекомендуется придерживаться определенного порядка действий, не стремясь сразу начинать графические построения (может оказаться, что они

Гидростатическим напором в сети
Рассмотрим решение простой задачи для схемы системы, приведенной на рисунке 4.4. Этап 1. Предполагаемое направление расходов указано стрелками на схеме. В данной системе при большой высоте

Системы
Знание напоров или давлений в отдельных точках системы является исключительно важным с точки оценки требуемой прочности трубопровода, анализа возможности развития разрыва потока и кавитационных про

Последовательных приближений
В стационарном режиме в любой гидравлической системе должны соблюдаться массовый и энергетический балансы – приток среды равен расходу среды из системы, сообщаемый системе положительный напор от ис

Решение для системы с одним узлом
  Рассмотрим простую задачу, состоящую из двух участков с подключенными к ним емкостями (рисунок 6.2).  

Метод половинного деления
  При вычислении корня нелинейного уравнения методом половинного деления (метод ПД) решаемое уравнение должно быть приведено к виду Y(Х)= 0 (7.1)

Метод хорд
  При вычислении корня нелинейного уравнения методом хорд решаемое уравнение также должно быть приведено к виду (7.1). Метод хорд дает хорошие результаты на плавных кривых, имеющих мо

Метод Ньютона (метод касательной)
  При вычислении корня нелинейного уравнения методом Ньютона решаемое уравнение также должно быть приведено к виду (7.1). Метод Ньютона дает хорошие результаты на плавных кривых, имею

Метод простой итерации
Казалось бы, это один из самых простых методов решения нелинейных уравнений. В данном методе решаемое уравнение F(Х)= 0 необходимо представит в виде Х = f(Х)

Режимов трубопроводных систем
  8.1 Вывод расчетного уравнения для решения методом узловых давлений 8.2 Метод контурных расходов   Решение задач потокораспределения в трубопроводных

Давлений
  Снова рассмотрим систему из трех участков, для которой производилось определение расходов методом приближения (рисунок 8.1).    

Контурных расходов
  Рассмотрим элемент трубопроводной системы, состоящий из четырех участков, образующих замкнутый контур (рисунок 8.2). Предполагаемые направления потоков на участках показаны на рисун

Устойчивости
  Понятие устойчивости является общеинженерным и встречается при анализе режимов работы самых различных систем: устойчивость положения механической системы, устойчивость строительных

Процессы помпажа в насосных системах
  Рассмотрим работу системы, состоящей из насоса, трубопровода и напорного бака (на рисунке 9.3а). Линия характеристика насоса имеет «провал» и «горб» в пределах первого квадранта – т

Причины возникновения помпажа
  Помпаж в трубопроводных насосных системах возникает из-за сочетания ряда обстоятельств, каждое из которых может способствовать возникновению помпажа, но само по себе не является для

Конструктивные мероприятия
Учитывая, что для насосов с непрерывно падающей характеристикой возникновение помпажа в принципе невозможно, казалось бы очевидным использовать всегда именно такие насосы. Однако наличие горба на х

Проектные мероприятия
На этапе выполнения проектных работ необходимо так подобрать оборудование и его размещение, чтобы возможно было впоследствии эксплуатировать насосную установку без возникновения помпажа. Для этого

Причины разрыва потока в трубопроводных системах
При определенных условиях в трубопроводах гидравлических систем могут возникать разрывы сплошности потока, то есть часть или все сечение трубопровода занято не перемещаемой средой, а ее паром или в

Кавитация в насосах
  Кавитацией называется комплекс явлений, связанных с образование парогазовых полостей в проточной части какого-либо устройства из-за вскипания жидкости в зоне местного понижения стат

Допустимая геометрическая высота всасывания
Основной задачей при эксплуатации насосов является недопущение возможности возникновения кавитации в насосе. Достигается это правильным выбором геометрической высоты всасывания насоса Н

Мероприятия против возникновения кавитации
Из (10.11) следует, что для уменьшения возможности возникновения кавитации и увеличения допустимой высоты всасывания необходимо соблюдать следующие рекомендации:   а) перекач

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги