рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Процессы помпажа в насосных системах

Процессы помпажа в насосных системах - раздел Образование, РАБОТЫ ТРУБОПРОВОДНЫХ СИСТЕМ   Рассмотрим Работу Системы, Состоящей Из Насоса, Трубопровода ...

 

Рассмотрим работу системы, состоящей из насоса, трубопровода и напорного бака (на рисунке 9.3а). Линия характеристика насоса имеет «провал» и «горб» в пределах первого квадранта – такой вид характеристики типичен для диагональных и осевых насосав. Насос закачивает воду в водонапорную башню из водоема, при этом уровень воды в водоеме совпадает с уровнем установки насоса. Всасывающий трубопровод короткий и имеет достаточно большое сечение, поэтому в дальнейшем рассмотрении потерями в нем пренебрегаем. Все сопротивление сети тогда состоит только из напорного трубопровода 1, идущего от насоса к водонапорной башне. В начальный момент времени уровень в башне совпадает с уровнем установки насоса, поэтому гидростатический напор в сети Нг равен нулю.

Вначале рассмотрим ситуацию, когда водоразбор из напорной башни отсутствует (Qразб. = 0).

В момент включения насоса начальный режим работы системы, согласно методу наложения характеристик, определяется точкой пересечения характеристики нагнетательной установки (насоса а) и характеристики сети, то есть трубопровода 1 (точка Ф0). Напор насоса при этом тратится только на преодоление потерь напора в трубопроводе.

 

 

а) схема системы

 

 


б) графическое отображение режимов системы

 
 

 

 


Рисунок 9.3 – Графическое отображение помпажа в насосной

системе

 

Так как этом расход Q0 направлен в сторону башни, она начинает наполняться, и уровень поверхности воды медленно поднимается вверх. В сети появляется гидростатический напор, равный высоте уровня воды в башне. На графике это отображается смещением параболы сети вверх на величину гидростатического напора. Характеристика сети изменяется, и в результате устанавливается некоторый промежуточный режим Ф1, определяемый также по методу наложения характеристик. Напор насоса теперь тратится на преодоление потерь напора в трубопроводе и гидростатического напора в сети.

Расход в системе, как видно из графика, медленно будет уменьшаться по мере наполнения башни (Q1 < Q0). Никаких негативных явлений в течение этого процесса не происходит.

По мере дальнейшего наполнения водонапорной башни происходит постепенное повышение уровня воды в ней, рост гидростатического напора в сети, при уменьшении расхода в системе. Рабочая точка Ф, отображающая режим работы системы на графике, медленно смещается по характеристике насоса до тех пор, пока не установится рабочий режим, отображаемый точкой Ф2. Эта точка является критической: характеристика сети в ней является касательной к характеристике насоса, то есть соблюдается условие неустойчивого равновесия (9.1).

Расход в системе по-прежнему положителен, то есть водонапорная башня продолжает наполняться. Если гидростатический напор в сети станет хотя бы незначительно больше Н2, то характеристика сети должна на графике подняться еще выше, при этом она должна в окрестности точки Ф2 оторваться от характеристики насоса. Раз пресечения характеристик нагнетателя и сети нет, то не может существовать и рабочий режим в этой зоне – в результате рабочий режим скачком переходит в точку Ф3, где имеется пересечение характеристик, то есть соблюдаются балансы расходов и энергий. Это скачкообразное изменение рабочего режима собственно и называется помпажом.

Помпаж является крайне нежелательным явлением, особенно в больших системах. Резкое изменение расхода в системе носит название гидравлического удара. При этом за счет инерции движущегося объема жидкости в отдельных точках возникают большие перепады давления, что для больших систем легко может приводить к аварийным ситуациям из-за большой массы движущейся воды. В нашем случае единственным препятствием, которое может затормозить поток, является рабочее колесо насоса – именно на него приходится гидравлический удар. При этом на колесо насоса действуют большие перепады давления, что может привести к прогибу ротора, и его заклиниванию, то есть поломке насоса.

Если после скачкообразного перехода режима в точку Ф3 аварии не произошло и насос продолжает работать, то водонапорная башня продолжает наполняться и уровень воды в ней поднимается, что приводит к росту гидростатического напора в сети и медленному смещению рабочего режима из точки Ф3 в точку Ф4 и далее в точку Ф5. В точке Ф5 расход в системе равен нулю, поэтому наполнение водонапорной башни прекращается, и данный режим может стоять сколь угодно долго. При нулевом расходе потери напора в трубопроводе отсутствуют, и напор насоса полностью уравновешивается напором со стороны водонапорной башни.

Однако, водонапорные башни строят не для красоты, а для обеспечения определенного водоразбора. При значении расхода разбора воды из башни в размере Qразб., как показано на графике, процесс после перехода режима в точку Ф3 будет развиваться уже по-другому. Так как водоразбор из башни больше подачи насоса Q3, то теперь водонапорная башня начнет опорожняться, и уровень воды в ней начнет опускаться. Это приведет к снижению гидростатического напора в сети, и и медленному смещению рабочего режима из точки Ф3 в точку Ф6 и далее в точку Ф7. В точке Ф7 характеристика сети снова становится касательной к характеристике насоса. При этом расход Qразб. меньше, чем Qразб. , поэтому характеристика сети должна опуститься на графике еще ниже и оторваться от характеристики насоса. В результате снова происходит скачкообразное изменение рабочего режима – их точки Ф7 он переходит в точку Ф8.

Дальше весь процесс будет повторяться бесконечно по замкнутому циклу Ф8 Ф2 Ф3 Ф7 Ф8 . При этом за один цикл будет происходить два скачкообразных перехода режима с гидравлическими ударами по колесу насоса. В итоге неизбежно произойдет поломка насоса.

.

 
 
С7

 


Рисунок 9.4 – Графическое отображение помпажа со сливом воды

через насос

 

 

Помпаж может происходить и при отсутствии водоразбора из водонапорной башни, если характеристика насоса имеет другую форму – провал на характеристике сдвинут в область второго квадранта, а в первом квадранте имеется только «горб». Графическое отображение помпажа в такой системе приведено на рисунке 9.4, промежуточные рабочие режимы для простоты картины не показаны.

При включении насоса рабочий режим устанавливается в точке Ф0. Далее, как и в предыдущем варианте, он медленно смещается в точку Ф2. Напор насоса затрачивается на преодоление потерь напора в трубопроводе и гидростатического напора в сети. Так как расход Q2 положителен, то уровень воды в башне еще повышается, и происходит помпажный скачок расхода, в результате чего рабочий режим переходит в точку Ф3, расположенную во втором квадранте. Теперь расход в системе становится отрицательным, то есть вода через работающий насос стекает из водонапорной башни обратно в водоем. В этом режиме гидростатического напор, запасенный в башне, затрачивается на преодоление противодействующего напора насоса и потерь напора в трубопроводе.

Так как расход Q2 отрицателен, водонапорная башня опорожняется. Уровень воды в ней медленно понижается, и рабочий режим медленно переходит из точки Ф3 в точку Ф7 , в которой линия характеристики сети касательна к характеристике насоса. Характеристика сети из-за дальнейшего снижения гидростатического напора опять отрывается от характеристики насоса, и снова происходит помпажный скачок расхода с переходом режима в точку Ф8. Цикл Ф8 Ф2 Ф3 Ф7 Ф8 , как и в предыдущем примере, может повторяться бесконечно долго.

Помпаж может возникать в различных системах – в вентиляторных, компрессорных и насосных системах. Однако, в тех системах, где перекачиваются газы, помпаж, даже если он возник, обычно не приводит к аварийной поломке нагнетателя, так как плотность газа или воздуха намного меньше воды, и сила гидравлических ударов существенно меньше. Кроме того, газы являются сжимаемыми жидкостями, поэтому они сами сглаживают скачки давления, возникающие в переходных режимах. В вентиляционных системах, где вентиляторы работают на сеть без гидростатического напора, помпаж также маловероятен, хотя в принципе возникнуть может. Ввиду выше сказанного, помпаж обычно рассматривается применительно к насосным системам, где его возникновение считается недопустимым.

 

 

– Конец работы –

Эта тема принадлежит разделу:

РАБОТЫ ТРУБОПРОВОДНЫХ СИСТЕМ

Государственное образовательное учреждение... высшего профессионального образования Тихоокеанский государственный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Процессы помпажа в насосных системах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Некоторые термины и понятия
  Трубопроводная система предназначена для перемещения на определенное расстояние некоторой транспортируемой среды, которой чаще всего является вода или воздух

Конструктивные характеристики трубопроводных систем
  Трубопроводная сеть состоит из отдельных трубопроводов, каждый из которых может иметь свои индивидуальные характеристики. Рассмотри основные характеристики трубопроводов. &

Характеристики перемещаемой среды
  Характеристики перемещаемой среды имеют важное значение для расчета гидравлического режима системы. К ним относятся плотность и вязкость

Режимные параметры трубопроводных систем
  Основными параметрами работы любой трубопроводной системы или ее отдельного элемента являются, расход, скорость среды, давление или напор, потери напора, потребляемая мощ

Потери давления и напора в трубопроводе
  Как указывалось выше, при движении жидкости по трубопроводу энергия потока, то есть его давление или напор, уменьшается, в итоге потерянная механическая энергия потока переходит в т

Понятие характеристик трубопровода и нагнетателя
  Как ясно из изложенного выше, потери давления в неком участке трубопровода зависят от расхода, характеристик трубопровода и перемещаемой среды. Зависимость потерь давления

Разбиение системы на нагнетатель и сеть.
  Реальная трубопроводная система может состоять из большого числа отдельных элементов, однако при расчетах и анализах ее работы часто удобнее представить ее состоящей всего из двух у

Уравнения балансов среды и энергии в системе
  Многие технические задачи решаются на основе составления балансных уравнений. Слово «баланс» означает «равенство», «равновесие» неких движущих сил или параметров процесса и сил и па

Графический метод наложения характеристик
  Наличие балансов среды и энергии в системе позволяют получить систему из двух уравнений, которую можно решить относительно р

Причины необходимости сложения характеристик
Как ясно из предыдущего раздела, для нахождения рабочего режима системы по методу наложения характеристик требуется рассматривать систему как состоящую только из двух элементов — нагнетательной уст

Системы при последовательном соединении
  Последовательное соединение— это такое соединение, при котором два элемента имеют одну общую точку, причем конец первого элемента соединен с началом второго, а

Параллельном соединении
Параллельное соединение—это такое соединение, при котором два элемента имеют две общих точки, при этом начало первого элемента соединено с началом второго, конец первого элемен

Логарифмической системе координат
  Логарифмическая система координат очень часто используется для отображения гидравлических характеристик вентиляторов и элементов вентиляционных сетей – решеток, воздухораспределител

Аналитическое сложение характеристик трубопроводов
  Во многих случаях при расчетах систем требуется определить итоговую характеристику сети, состоящей из нескольких участков трубопровода или нескольких единиц оборудования. Если извес

Характеристик
  При нахождении режимов трубопроводных систем рекомендуется придерживаться определенного порядка действий, не стремясь сразу начинать графические построения (может оказаться, что они

Гидростатическим напором в сети
Рассмотрим решение простой задачи для схемы системы, приведенной на рисунке 4.4. Этап 1. Предполагаемое направление расходов указано стрелками на схеме. В данной системе при большой высоте

Системы
Знание напоров или давлений в отдельных точках системы является исключительно важным с точки оценки требуемой прочности трубопровода, анализа возможности развития разрыва потока и кавитационных про

Последовательных приближений
В стационарном режиме в любой гидравлической системе должны соблюдаться массовый и энергетический балансы – приток среды равен расходу среды из системы, сообщаемый системе положительный напор от ис

Решение для системы с одним узлом
  Рассмотрим простую задачу, состоящую из двух участков с подключенными к ним емкостями (рисунок 6.2).  

Метод половинного деления
  При вычислении корня нелинейного уравнения методом половинного деления (метод ПД) решаемое уравнение должно быть приведено к виду Y(Х)= 0 (7.1)

Метод хорд
  При вычислении корня нелинейного уравнения методом хорд решаемое уравнение также должно быть приведено к виду (7.1). Метод хорд дает хорошие результаты на плавных кривых, имеющих мо

Метод Ньютона (метод касательной)
  При вычислении корня нелинейного уравнения методом Ньютона решаемое уравнение также должно быть приведено к виду (7.1). Метод Ньютона дает хорошие результаты на плавных кривых, имею

Метод простой итерации
Казалось бы, это один из самых простых методов решения нелинейных уравнений. В данном методе решаемое уравнение F(Х)= 0 необходимо представит в виде Х = f(Х)

Режимов трубопроводных систем
  8.1 Вывод расчетного уравнения для решения методом узловых давлений 8.2 Метод контурных расходов   Решение задач потокораспределения в трубопроводных

Давлений
  Снова рассмотрим систему из трех участков, для которой производилось определение расходов методом приближения (рисунок 8.1).    

Контурных расходов
  Рассмотрим элемент трубопроводной системы, состоящий из четырех участков, образующих замкнутый контур (рисунок 8.2). Предполагаемые направления потоков на участках показаны на рисун

Устойчивости
  Понятие устойчивости является общеинженерным и встречается при анализе режимов работы самых различных систем: устойчивость положения механической системы, устойчивость строительных

Причины возникновения помпажа
  Помпаж в трубопроводных насосных системах возникает из-за сочетания ряда обстоятельств, каждое из которых может способствовать возникновению помпажа, но само по себе не является для

Конструктивные мероприятия
Учитывая, что для насосов с непрерывно падающей характеристикой возникновение помпажа в принципе невозможно, казалось бы очевидным использовать всегда именно такие насосы. Однако наличие горба на х

Проектные мероприятия
На этапе выполнения проектных работ необходимо так подобрать оборудование и его размещение, чтобы возможно было впоследствии эксплуатировать насосную установку без возникновения помпажа. Для этого

Причины разрыва потока в трубопроводных системах
При определенных условиях в трубопроводах гидравлических систем могут возникать разрывы сплошности потока, то есть часть или все сечение трубопровода занято не перемещаемой средой, а ее паром или в

Кавитация в насосах
  Кавитацией называется комплекс явлений, связанных с образование парогазовых полостей в проточной части какого-либо устройства из-за вскипания жидкости в зоне местного понижения стат

Допустимая геометрическая высота всасывания
Основной задачей при эксплуатации насосов является недопущение возможности возникновения кавитации в насосе. Достигается это правильным выбором геометрической высоты всасывания насоса Н

Мероприятия против возникновения кавитации
Из (10.11) следует, что для уменьшения возможности возникновения кавитации и увеличения допустимой высоты всасывания необходимо соблюдать следующие рекомендации:   а) перекач

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги