рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Свойства функций, непрерывных на отрезке

Свойства функций, непрерывных на отрезке - Лекция, раздел Образование, Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций Функция Называется Непрерывной На Отрезке Если А)...

Функция называется непрерывной на отрезке если а) она непрерывна в любой точке а на концах и отрезка непрерывна справа и слева соответственно, т.е. Функции, непрерывные на отрезке, обладают рядом замечательных свойств, сформулированных ниже.

1. Теорема Вейерштрасса Если функция непрерывна на отрезке то она ограничена на этом отрезке, т.е. существует постоянная такая, что

2. Теорема Вейерштрасса Если функция непрерывна на отрезке то она достигает на этом отрезке своих наибольшего и наименьшего значений, т.е. существуют точки такие, что

3.Теорема Больцано-КошиЕсли функция непрерывна на отрезке то каково бы ни было значение существует значение такое, что

4. Теорема Больцано-Коши Если функция непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков то существует хотя бы одно значение такое, что

2. Монотонность функции

Напомним определение монотонных функций.

Определение 1.Говорят, что функция строго возрастает на множестве если для любых из неравенства вытекает неравенство Если же то функция называется строго убывающей на множестве Если же из строгого неравенства между аргументами вытекают нестрогое неравенство между значениями функции, то говорят, что является неубывающей (соответственно невозрастающей ) на множестве Множество всех функций строго возрастающих и строго убывающих образует класс строго монотонных функций; невозрастающие и неубывающие функции образует класс просто монотонных функций.

При исследовании на монотонность функций используются выписанная ранее

Теорема Лагранжа.Если функция непрерывна на отрезке и является дифференцируемой по-крайней мере в интервале то существует точка такая, что

 

Теорема 1.Пусть функциянепрерывна на отрезке и является дифференцируемой по-крайней мере в интервале Тогда справедливы следующие высказывания:

1. если то функция строго возрастает на отрезке ;

2. если то функция строго убывает на отрезке .

Доказательствовытекает из равенства (1), в котором надо положить Действительно, если а (тогда и ), то (см. (1)) будет

выполняться неравенство Это означает, что функция строго возрастает на отрезке . Аналогично доказывается высказывание 2. Теорема доказана.

Замечание 1. Можно показать, что в случае нестрогого знака производной имеет место высказывание:

3. Для того чтобы функция удовлетворяющая условиям теоремы 1, была неубывающей (невозрастающей) на отрезке , необходимо и достаточно, чтобы (соответственно ).

Например, функция строго убывает на любом отрезке так как при и эта функция строго возрастает на так как при

– Конец работы –

Эта тема принадлежит разделу:

Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций

Лекция Предел функции в точке и при Односторонние пределы Действия над пределами Бесконечно малые функции таблица эквивалентных бесконечно... Обозначения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Свойства функций, непрерывных на отрезке

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие функции
  Пусть даны два множества и Определение 1.Говорят, что на множеситве задана функция отображающая множество в множество если каждому элементу поставлен в

Предел функции
Сначала дадим понятие предела функции в конечной точке Различают проколотую - окрестность точки которая определяется как симметричный интервал с выброшенной точкой  

Бесконечно малые функции и их свойства
Определение 3. Функция называется бесконечно малой функцией в точке или функцией класса , если При этом пишут Таким образом,   Например, функция а фун

Бесконечно большие функции и их связь с бесконечно малыми
Пусть функция определена в некоторой проколотой окрестности точки Определение 5. Функция называется бесконечно большой функцией (ББФ) при если для всякого существует чи

Непрерывность функции в точке
  Пусть функция определена в точке и некоторой ее окрестности. Определение 2. Функция называется непрерывной в точке если т.е. если

Производная функции в точке, ее геометрический и механический смысл
  На рисунке изображены график функции точки секущая, касательная к кривой углы Пусть функция определена в точке и некоторой ее окрестности . Сместимся из точки в точку Величина назы

Производная сложной и обратной функций и функции, заданной параметрически
Приведем без доказательства некоторые утверждения, связанные с производными. Теорема 5.Пусть сложная функция определена в точке и некоторой ее окре

Производные простейших элементарных функций
  Используя определение 4 производной, а также теоремы 6 и 7, можно доказать следующее утверждение. Теорема 8.В области определения соответствующих функци

Производные и дифференциалы высших порядков
Производная есть сама функция от поэтому можно взять от нее производную. Полученная таким образом функция (если она существует) называется второй производной от функции и обозначается И вообще:

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа
При вычислении пределов функций мы использовали таблицу 1 эквивалентных бесконечно малых. Например, при вычислении предела мы использовали формулы Однако этих формул не достаточно для вычисления пр

Правило Лопиталя
  Другой способ раскрытия неопределенностей типаили доставляет так называемое правило Лопиталя, к изложению которого мы переходим. Теорема Лопиталя

Локальный экстремум
Пусть функция определена в точке и некоторой её окрестности. Определение 2.Говорят, что функция достигает в точке локального максимума, если существует такое, что в

Выпуклость, вогнутость, точки перегиба
Пусть функция дифференцируема в точке Тогда в точке она имеет касательную, каждая точка удовлетворяет уравнению   Определение 3.Говорят, что кривая выпукл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги