рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Локальный экстремум

Локальный экстремум - Лекция, раздел Образование, Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций Пусть Функция Определена В Точке И Некоторой Её Окрестности. ...

Пусть функция определена в точке и некоторой её окрестности.

Определение 2.Говорят, что функция достигает в точке локального максимума, если существует такое, что выполняется неравенство . Если при указанных имеет место противоположное неравенство то говорят, что в точке функция достигает в точке локального минимума.

Заметим, если неравенства или обращаются в равенство лишь в одной точке то говорят, что соответствующий максимум или минимум является строгим. Точки функция достигает локального максимума или минимума, называются точками локального экстремума этой функции.

Замечание 2.Слово “локальный” здесь означает, что введенное понятие экстремума верно лишь в достаточно малой окрестности точки Иногда слово “локальный” будем опускать.

Необходимое условие экстремума.Пусть в точке функция достигает локального экстремума. Тогда либо в этой точке функция дифференцируема и тогда либоне дифференцируема в точке

Замечание 3.Точки такие, что либо равна нулю, либо не существует (или равна ), называтся критическими точками функции

Если точка локального экстремума функции то она обязательно для неё критическая. Обратное утверждение, вообще говоря, не верно. Например, для функции производная но в точке эта функция не имеет экстремума. Как проверить, что в критической точке достигается экстремум? Ответ на этот вопрос содержится в следующем утверждении.

Теорема 2 (достаточные условия экстремума по первой производной).Пусть точка критическая точка для функции и функциянепрерывна в этой точке. Пусть, кроме того, производнаясуществует в некоторой проколотой окрестности точки Тогда:

1. если при переходе аргумента через точку (слева направо) изменяет знак с на то в точке функция достигает локального максимума;

2. если при переходе аргумента через точку (слева направо) изменяет знак с на то в точке функция достигает локального минимума;

3. если в окрестности точки функция не изменяет знака, то в точке функция не достигает локального экстремума.

Доказательство.Действительно, если то функция возрастает на отрезке и, значит, для всех из указанного отрезка. С другой стороны, так как то функция убывает на отрезке и, значит, снова для всех из указанного отрезка. Следовательно, при всех выполняется неравенство т.е. точка является точкой локального максимума. Аналогично доказываются утверждения 2 и 3. Теорема доказана.

Например, рассмотренная выше функция имеет в точке минимум, так как при переходе через критическую точку изменяет знак с минуса на плюс. Другие достаточные условия экстремума с помощью высших производных будут даны позже. А сейчас приведем схему построения графика функции

с помощью первой производной. Сделаем это для конкретной функции Напомним сначала информацию о вычислении асимптот.

Если то прямая вертикальная асимптота для функции Если существуют конечные пределы

 

то прямая асимптота кривой Таким образом, асимптоты функции

могут возникнуть при подходе к точкам разрыва второго рода этой функции либо на бесконечности.

Схема построения графика функции с помощью первой производной.

1. Находим область определения функции

2. Находим (если это возможно) нули функции и ее интервалы знакопостоянства. Этот пункт мы опускаем, так как не можем точно решить уравнение (его приближенный корень равен 1.1478).

3. Находим точки разрыва функции и её асимптоты.

а) вертикальные асимптоты: так как

наклонных и горизонтальных асимптот нет, так как один из выписанных ниже пределов бесконечен:

 

 

4. Находим производную и исследуем функцию на монотонность и локальные экстремумы. Имеем

 

 

Итак, критические точки. Применяя метод интервалов, будем иметь:

 

Значит, в точке производная изменяет знак с плюса на минус, поэтому в этой точке функция имеет локальный максимум, равный приближенно По полученной информации строим график функции Он буде иметь вид, указанный на рисунке.

 

– Конец работы –

Эта тема принадлежит разделу:

Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций

Лекция Предел функции в точке и при Односторонние пределы Действия над пределами Бесконечно малые функции таблица эквивалентных бесконечно... Обозначения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Локальный экстремум

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие функции
  Пусть даны два множества и Определение 1.Говорят, что на множеситве задана функция отображающая множество в множество если каждому элементу поставлен в

Предел функции
Сначала дадим понятие предела функции в конечной точке Различают проколотую - окрестность точки которая определяется как симметричный интервал с выброшенной точкой  

Бесконечно малые функции и их свойства
Определение 3. Функция называется бесконечно малой функцией в точке или функцией класса , если При этом пишут Таким образом,   Например, функция а фун

Бесконечно большие функции и их связь с бесконечно малыми
Пусть функция определена в некоторой проколотой окрестности точки Определение 5. Функция называется бесконечно большой функцией (ББФ) при если для всякого существует чи

Непрерывность функции в точке
  Пусть функция определена в точке и некоторой ее окрестности. Определение 2. Функция называется непрерывной в точке если т.е. если

Производная функции в точке, ее геометрический и механический смысл
  На рисунке изображены график функции точки секущая, касательная к кривой углы Пусть функция определена в точке и некоторой ее окрестности . Сместимся из точки в точку Величина назы

Производная сложной и обратной функций и функции, заданной параметрически
Приведем без доказательства некоторые утверждения, связанные с производными. Теорема 5.Пусть сложная функция определена в точке и некоторой ее окре

Производные простейших элементарных функций
  Используя определение 4 производной, а также теоремы 6 и 7, можно доказать следующее утверждение. Теорема 8.В области определения соответствующих функци

Производные и дифференциалы высших порядков
Производная есть сама функция от поэтому можно взять от нее производную. Полученная таким образом функция (если она существует) называется второй производной от функции и обозначается И вообще:

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа
При вычислении пределов функций мы использовали таблицу 1 эквивалентных бесконечно малых. Например, при вычислении предела мы использовали формулы Однако этих формул не достаточно для вычисления пр

Правило Лопиталя
  Другой способ раскрытия неопределенностей типаили доставляет так называемое правило Лопиталя, к изложению которого мы переходим. Теорема Лопиталя

Свойства функций, непрерывных на отрезке
Функция называется непрерывной на отрезке если а) она непрерывна в любой точке а на концах и отрезка непрерывна справа и слева соответственно, т.е. Функции, непрерывные

Выпуклость, вогнутость, точки перегиба
Пусть функция дифференцируема в точке Тогда в точке она имеет касательную, каждая точка удовлетворяет уравнению   Определение 3.Говорят, что кривая выпукл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги