рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производная функции в точке, ее геометрический и механический смысл

Производная функции в точке, ее геометрический и механический смысл - Лекция, раздел Образование, Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций   На Рисунке Изображены График Функции Точки Секущая, Касатель...

 

На рисунке изображены график функции точки секущая, касательная к кривой углы Пусть функция определена в точке и некоторой ее окрестности . Сместимся из точки в точку Величина называется приращением аргумента в точке а величина = называется приращением функции в точке (соответствующим приращению аргумента).

Определение 4. Если существует (конечный) предел

 

то его называют производной функции в точке и обозначают При этом функцию называют дифференцируемой в точке а

величину называют дифференциалом функции в точке

Выясним, в чем состоит геометрический смысл производной и дифференциала. Так как и так как то т.е.

т.е. производная функции в точке является угловым коэффициентом касательной к кривой с точкой касания

С другой стороны, из рисунка видно,что поэтому

дифференциал равен приращению касательной к графику функции при переходе аргумента из точки в точку

Из геометрического смысла производной легко получить уравнения касательной и нормали к кривой в точке

(касательная), (нормаль).

Выясним теперь механический смысл производной. Если путь пройденный материальной точкой за время от момента до момента то средняя скорость материальной точки, а величина

мгновенная скорость материальной точки в момент

Нетрудно показать, что

любая дифференцируемая в точке функция непрерывна в точке (обратное, вообще говоря, неверно; пример: непрерывна в точке но не существует).

– Конец работы –

Эта тема принадлежит разделу:

Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций

Лекция Предел функции в точке и при Односторонние пределы Действия над пределами Бесконечно малые функции таблица эквивалентных бесконечно... Обозначения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производная функции в точке, ее геометрический и механический смысл

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие функции
  Пусть даны два множества и Определение 1.Говорят, что на множеситве задана функция отображающая множество в множество если каждому элементу поставлен в

Предел функции
Сначала дадим понятие предела функции в конечной точке Различают проколотую - окрестность точки которая определяется как симметричный интервал с выброшенной точкой  

Бесконечно малые функции и их свойства
Определение 3. Функция называется бесконечно малой функцией в точке или функцией класса , если При этом пишут Таким образом,   Например, функция а фун

Бесконечно большие функции и их связь с бесконечно малыми
Пусть функция определена в некоторой проколотой окрестности точки Определение 5. Функция называется бесконечно большой функцией (ББФ) при если для всякого существует чи

Непрерывность функции в точке
  Пусть функция определена в точке и некоторой ее окрестности. Определение 2. Функция называется непрерывной в точке если т.е. если

Производная сложной и обратной функций и функции, заданной параметрически
Приведем без доказательства некоторые утверждения, связанные с производными. Теорема 5.Пусть сложная функция определена в точке и некоторой ее окре

Производные простейших элементарных функций
  Используя определение 4 производной, а также теоремы 6 и 7, можно доказать следующее утверждение. Теорема 8.В области определения соответствующих функци

Производные и дифференциалы высших порядков
Производная есть сама функция от поэтому можно взять от нее производную. Полученная таким образом функция (если она существует) называется второй производной от функции и обозначается И вообще:

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа
При вычислении пределов функций мы использовали таблицу 1 эквивалентных бесконечно малых. Например, при вычислении предела мы использовали формулы Однако этих формул не достаточно для вычисления пр

Правило Лопиталя
  Другой способ раскрытия неопределенностей типаили доставляет так называемое правило Лопиталя, к изложению которого мы переходим. Теорема Лопиталя

Свойства функций, непрерывных на отрезке
Функция называется непрерывной на отрезке если а) она непрерывна в любой точке а на концах и отрезка непрерывна справа и слева соответственно, т.е. Функции, непрерывные

Локальный экстремум
Пусть функция определена в точке и некоторой её окрестности. Определение 2.Говорят, что функция достигает в точке локального максимума, если существует такое, что в

Выпуклость, вогнутость, точки перегиба
Пусть функция дифференцируема в точке Тогда в точке она имеет касательную, каждая точка удовлетворяет уравнению   Определение 3.Говорят, что кривая выпукл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги