рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа - Лекция, раздел Образование, Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций При Вычислении Пределов Функций Мы Использовали Таблицу 1 Эквивалентных Беско...

При вычислении пределов функций мы использовали таблицу 1 эквивалентных бесконечно малых. Например, при вычислении предела мы использовали формулы Однако этих формул не достаточно для вычисления предела

 

Нужны более точные формулы или так называемые асимптотические разложения высших порядков. Переходя к описанию таких разложений, введем следующее понятие.

Определение 5.Пусть функция определена в некоторой проколотой окрестности

точки Говорят, что функция имеет в точке асимптотическое разложение го порядка, если существуют числа такие, что в некоторой в некоторой проколотой окрестности представляется в виде

 

Здесь Равенство (3) означает, что функция аппроксимируется (приближенно равна) в некоторой малой окрестности точки многочленом. В каком случае функция имеет асимптотическое разложение порядка? Ответ на этот вопрос содержится в следующем утверждении.

Теорема 2.Пусть функция имеет в точке производные до го порядка включительно. Тогда имеет в точке асимптотическое разложение порядка вида

(формулу (4) называют формулой Тейлора с остаточным членом в форме Пеано или локальной формулой Тейлора).

Если в (4) положить то получим формулу называемую формулой Маклорена-Тейлора. Приведем формулы Маклорена-Тейлора для основных элементарных функций.

Теорема 3.Имеют место следующие разложения:

Доказательствоэтих формул базируется на подсчёте производной го порядка соответствующей функции. Докажем, например, формулу (2) .

Итак, пусть По теореме 1 имеем

 

Значит, в формуле

 

будут отсутствовать все четные степени а слагаемые с нечетными степенями имеют вид Следовательно имеет место формула 2.

Замечание 1.В формуле 2 остаточный член можно записать в виде а в формуле 3–

в виде (почему?).

Теорема 2 аппроксимирует функцию лишь в достаточно малой окрестности точки Условия представления функции на некотором отрезке (где может быть достаточно большим) по формуле Тейлора описаны в следующем утверждении.

Теорема 4.Пусть функция удовлетворяет следующим условиям:

1) существуют и непрерывны на отрезке ;

2) производная существует и конечна по-крайней мере на интервале

Тогда для всехфункция представляется в виде

где точка находится между и

Формулу (5) называют (глобальной) формулой Тейлора с остаточным членом в форме Лагранжа.

Если в формуле (5) положить то получим равенство или, обозначая будем иметь

 

Эту формулу называют формулой Лагранжа. Она верна в случае, когда функция непрерывна отрезке а существует и конечна по-крайней мере на интервале

 

– Конец работы –

Эта тема принадлежит разделу:

Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций

Лекция Предел функции в точке и при Односторонние пределы Действия над пределами Бесконечно малые функции таблица эквивалентных бесконечно... Обозначения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Формула Тейлора с остаточными членами в форме Пеано и Лагранжа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие функции
  Пусть даны два множества и Определение 1.Говорят, что на множеситве задана функция отображающая множество в множество если каждому элементу поставлен в

Предел функции
Сначала дадим понятие предела функции в конечной точке Различают проколотую - окрестность точки которая определяется как симметричный интервал с выброшенной точкой  

Бесконечно малые функции и их свойства
Определение 3. Функция называется бесконечно малой функцией в точке или функцией класса , если При этом пишут Таким образом,   Например, функция а фун

Бесконечно большие функции и их связь с бесконечно малыми
Пусть функция определена в некоторой проколотой окрестности точки Определение 5. Функция называется бесконечно большой функцией (ББФ) при если для всякого существует чи

Непрерывность функции в точке
  Пусть функция определена в точке и некоторой ее окрестности. Определение 2. Функция называется непрерывной в точке если т.е. если

Производная функции в точке, ее геометрический и механический смысл
  На рисунке изображены график функции точки секущая, касательная к кривой углы Пусть функция определена в точке и некоторой ее окрестности . Сместимся из точки в точку Величина назы

Производная сложной и обратной функций и функции, заданной параметрически
Приведем без доказательства некоторые утверждения, связанные с производными. Теорема 5.Пусть сложная функция определена в точке и некоторой ее окре

Производные простейших элементарных функций
  Используя определение 4 производной, а также теоремы 6 и 7, можно доказать следующее утверждение. Теорема 8.В области определения соответствующих функци

Производные и дифференциалы высших порядков
Производная есть сама функция от поэтому можно взять от нее производную. Полученная таким образом функция (если она существует) называется второй производной от функции и обозначается И вообще:

Правило Лопиталя
  Другой способ раскрытия неопределенностей типаили доставляет так называемое правило Лопиталя, к изложению которого мы переходим. Теорема Лопиталя

Свойства функций, непрерывных на отрезке
Функция называется непрерывной на отрезке если а) она непрерывна в любой точке а на концах и отрезка непрерывна справа и слева соответственно, т.е. Функции, непрерывные

Локальный экстремум
Пусть функция определена в точке и некоторой её окрестности. Определение 2.Говорят, что функция достигает в точке локального максимума, если существует такое, что в

Выпуклость, вогнутость, точки перегиба
Пусть функция дифференцируема в точке Тогда в точке она имеет касательную, каждая точка удовлетворяет уравнению   Определение 3.Говорят, что кривая выпукл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги