рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Статистическое оценивание параметров распределения

Статистическое оценивание параметров распределения - раздел Математика, Теория случайных чисел Мы Анализируем Только Выборки Из Генеральной Совокупности. По Средне Выборочн...

Мы анализируем только выборки из генеральной совокупности. По средне выборочным параметрам находим параметры самой генеральной совокупности.

Задачи такого рода решаются методами проверки статистических гипотез и статистической оценки параметров распределения.

Прежде нужно получить и провести первичную обработку исходных экспериментальных данных.

Статистические ряды часто изображают графически в виде полигона, гистограммы, кумулятивной кривой F*(x).

Полигон – ломаная линия, соединяющая в декартовой системе координат точки (xi,ni), (xi,mxi).

Кумулятивная кривая строится по точкам (xi,F*(xi)).

Гистограмма – на оси абсцисс – отрезки интервалов t, на этих интервалах строятся прямоугольники с высотой, равной относительной частоте признака. По гистограмме легко строится полигон.

И полигон, и гистограмма характеризуют функцию f*(x) – плотность вероятности.

НСВ – проблема выбора интервала варьирования h.

h выбирается, исходя из необходимости выявления характерных черт рассматриваемого распределения.

Правило Старджесса:

Как только характерные особенности распределения проявились, ставится вопрос об условиях, при которых сформировалось данное распределение – вопрос об однородности статистических данных.

Если функция f*(x) – бимодальная (имеет два максимума), то статистическое данные неоднородные.

Методы математической статистики должны позволить сделать обоснованные выводы о числовых параметрах и законе распределения генеральной совокупности по ограниченному числу выборок из этой совокупности.

Состав выборок случаен и выводы могут быть ложными. С увеличением объема выборки вероятность правильных выводов растет. Всякому решению, принимаемому при статистической оценке параметров, ставится в соответствие некоторая вероятность, характеризующая степень достоверности принимаемого решения.

Задачи оценки параметров распределения ставятся следующим образом:

Есть СВ Х, характеризуемая функцией F(X, q).

q – параметр, подлежащий оценке.

Делаем m независимых выборок объемом n элементов xij (i – номер выборки, j – номер элемента в выборке).

1 x11, x12, …, x1n X1

2 x21, x22, …, x2n X2

m xm1, xm2, …, xmn Xm

Случайные величины X1, X2,…Xm мы рассматриваем как m независимых СВ, каждая из которых распределена по закону F(X, q).

Всякую однозначную функцию наблюдений над СВ х, с помощью которой судят о значении параметра q, называют – оценкой параметра q.

Выбор оценки, позволяющей получить хорошее приближение к оцениваемому параметру – задача исследования.

Основные свойства оценок

Несмещенность, эффективность и состоятельность.

Оценка параметра q называется несмещенной, если M()=q.

Если – в оценке параметра q имеется систематическая ошибка.

Несмещенность оценки гарантирует отсутствие систематической ошибки в оценке параметра.

Несмещенных оценок может быть несколько.

– несмещенная оценка q.

Разброс параметров или рассеяние величины относительно математического ожидания q характеризует дисперсия D(), D().

Из двух или более несмещенных оценок предпочтение отдается оценке, обладающей меньшим рассеянием относительно оцениваемого параметра.

Оценка называется состоятельной, если она подчиняется закону больших чисел:

На практике не всегда удается удовлетворить одновременно всем трем требованиям.

Оценка математического ожидания по выборке

Теорема 1. Среднее арифметическое по n независимым наблюдениям над СВ x с МО m является несмещенной оценкой этого параметра.

Доказательство: x1,x2,…,xn M(x)=m M(x1)=M(x2)=…=M(xn)=m

Теорема 2. Среднее арифметическое по n независимым наблюдениям над СВ x с МО m и дисперсией D(x)=s2 является состоятельной оценкой МО.

Доказательство: D(x)=s2 D(x1)=D(x2)=…=D(xn)=s2

Теорема 3. Если СВ Х распределена по нормальному закону с параметрами (m,s2), то несмещенная и состоятельная оценка МО m имеет минимальную дисперсию s2/n => является и эффективной.

Оценки дисперсии по выборке

Если случайная выборка состоит из n независимых наблюдений над СВ Х с M(X)=m и D(X)=s2, то выборочная дисперсия не является несмещенной оценкой дисперсии генеральной совокупности.

Несмещенной оценкой D(x) является , .

Легко доказать по формуле Чебышева, что оценки S2 и являются состоятельными оценками дисперсии.

Несмещенная, состоятельная и эффективная оценка дисперсии:

Если МО генеральной совокупности неизвестно, то используют .

Существуют регулярные методы получения оценок параметров генеральной совокупности по данным выборок.

– Конец работы –

Эта тема принадлежит разделу:

Теория случайных чисел

На сайте allrefs.net читайте: "Теория случайных чисел"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Статистическое оценивание параметров распределения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

WmA=n hn(A)=1
Æ mA=0 hn(A)=0 Все мыслимые взаимоисключающие исходы опыта называются элементарными событиями. Наряду с ними можно наблюдат

A1+A2+…+An=W
-событие противоположное событию А, если оно состоит в не появлении события А.

Если число (np+q) целое, то существует 2 числа k0.
  Предельные теоремы в схеме Бернулли. 1. Пр

Основные дискретные и непрерывные случайные величины.
Дискретные случайные величины (ДСВ). 1. Биноминальная случайная величина x{0,1,2,3…n}

Многомерные законы распределения СВ
Часто при решении практических задач мы имеем дело не с одной, а с совокупностью нескольких случайных величин, которые взаимосвязаны. n x1,x2,…,xn

Дисперсия СВ
1. R=Xmax-Xmin – размах СВ 2. M(|X-m|) – среднее абсолютное отклонение СВ от центра группирования 3. M(X-m)2 – дисперсия – МО квадрата отклонения

Математическое ожидание и дисперсия суммы случайных величин
X1,X2,…,Xn – независимые СВ с одинаковым законом распределения. M(Xk)=a D(Xk)=s2

Предельные теоремы теории вероятностей
Делятся на две группы: Закон Больших Чисел (ЗБЧ) и Центральная Предельная Теорема (ЦПТ). Закон Больших Чисел устанавливает связь между абстрактными моделями тео

Методы оценки параметров генеральной совокупности
Метод наибольшего (максимального) правдоподобия (МНП)(ММП) обладает следующими достоинствами: 1. Всегда приводит к состоятельным оценкам (иногда смещенным)

Из нормальной совокупности. Распределение Стьюдента.
  Выборочное среднее рассчитанное по конкретной выборке, есть конкретное число. Состав выборки случаен и среднее арифметическое вычисленное по элементам другой выборки того же объёма,

Распределение χ2 Пирсона.
Выборочная дисперсия так же является случайной величиной меняющейся от выборки к выборки. 1) М(Х) – известно; 2) М(Х) – не известно.   1) Имеется случайная

Доверительный интервал.
Рассмотренные ранее оценки получили название точечных оценок. На практике широко используются интервальные оценки, для получения которых используется метод доверительных интервалов. В мето

Построение доверительного интервала для математического ожидания.
Случайная величина Х распределённая с параметрами (m, σ2). Математическое ожидание неизвестно и требуется построить для него доверительный интервал. 1. Известно &#

Проверка статистических гипотез.
  Наряду с оценкой параметров распределения по выборочным данным большой интерес представляет вид (закон) распределения неизвестный на практике. Такие задачи решаются методами статиче

Проверка гипотезы о равенстве центров распределения математического ожидания 2-х нормальных генеральных совокупностей.
Задача имеет большой практический интерес. Достаточно часто наблюдается такая ситуация, что средний результат в одной серии эксперимента отличается от среднего результата в другой серии эксперимент

Однофакторный дисперсионный анализ.
Большое количество практических задач приводится к задачам од­но­фак­торного дисперсионного анализа. Типичным примером является работа технологической линии в составе ко­торой имеется неск

Определение эмпирического корреляционного соотношения.
y – измеряемое значение зависимой переменной n – общее количество измерений

Коэффициент множественной корреляции
D* – это D с добавочными верхней строкой и правым столбцом, состоящих из свободных членов урав

Активный эксперимент
Ставится по плану. Достоинства: 1. Появляется четкая логическая схема всего исследования. 2. Повышается эффективность исследования. Оказывается возможным извлечь максимальное коли

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги