рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Случайные события. Частота. Вероятность.

Случайные события. Частота. Вероятность. - раздел Философия, ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности. Теория Вероятностей — Математическая Наука, Изучающая Закономерности Массовых...

Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий).

Случайным событием (или просто событием) называется всякое явление, которое может произойти или не произойти при осуществлении определенной совокупности условий. Теория вероятностей имеет дело с такими событиями, которые имеют массовый характер. Это значит, что данная совокупность условий может быть воспроизведена неограниченное число раз. Каждое такое осуществление данной совокупности условий называют испытанием (или опытом).

Если, например, испытание состоит в бросании монеты, то выпадение герба является событием; если испытание — изготовление подшипника данного типа, то соответствие подшипника стандарту — событие; если испытание — бросание игральной кости, т. е. кубика, на гранях которого проставлены цифры (очки) от 1 до 6, to выпадение пятерки — событие.

События будем обозначать заглавными буквами латинского алфавита: A, В, С, ... .

Пусть при n испытаниях событие A появилось m раз.

Отношение m/n называется частотой (относительной частотой) события A и обозначается Р*(А)=m/n

Опыт показывает, что при многократном повторении испытаний частота Р*(А) случайного события обладает устойчивостью. Поясним это на примере.

Пусть при бросании монеты 4040 раз герб выпал 2048 раз. Частота появления герба в данной серии опытов равна Р*(А)=m/n=2048/4040=0,5069. При бросании той же монеты 12000 раз герб выпал 6019 раз. Следовательно, в этом случае частота Р*(А)=6019/12000=0,5016. Наконец, при 24000 бросаний герб появился 12012 раз с частотой Р*(А)=0,5005. Таким образом, мы видим, что при большом числе бросаний монеты частота появления герба обладает устойчивостью, т. е. мало отличается от числа 0,5. Как показывает опыт, это отклонение частоты от числа 0,5 уменьшается с увеличением числа испытаний. Наблюдаемое в этом примере свойство устойчивости частоты является общим свойством массовых случайных событий, а именно, всегда существует такое число, к которому приближается частота появления данного события, мало отличаясь от него при большом числе испытаний. Это число называетсявероятностью события. Оно выражает объективную возможность появления события. Чем больше вероятность события, тем более возможным оказывается его появление. Вероятность события A будем обозначать через Р(А). В рассмотренном выше примере вероятность появления герба, очевидно, равна 0,5.

Событие называется достоверным, если оно в данном опыте обязательно должно произойти; наоборот, событие называетсяневозможным, если оно в данном опыте не может произойти.

Пусть, например, из урны, содержащей только черные шары, вынимают шар. Тогда появление черного шара — достоверное событие; появление белого шара — невозможное событие.

Если событие достоверно, то оно произойдет при каждом испытании (m=n). Поэтому частота достоверного события всегда равна единице. Наоборот, если событие невозможно, то оно ни при одном испытании не осуществится (m=0). Следовательно, частота невозможного события в любой серии испытаний равна нулю. Поэтому вероятность достоверного события равна единице, а вероятность невозможного события равна нулю.

Если событие A не является ни достоверным, ни невозможным, то его частота m/n при большом числе испытаний будет мало отличаться от некоторого числа p (где 0 < p < 1 ) — вероятности события A.

Совмещением (или произведением) двух событий A и В называется событие, состоящее в совместном наступлении как события A, так и события В. Это событие будем обозначать АВ или ВА.

Аналогично, совмещением нескольких событий, например A, В и С, называется событие D=ABC, состоящее в совместном наступлении событий A, В и С.

Объединением (или суммой) двух событий A и В называется событие С, заключающееся в том, что произойдет по крайней мере одно из событий A или В. Это событие обозначается так: С=А+В.

Объединением нескольких событий называется событие, состоящее в появлении по крайней мере одного из них. Запись D=A+B+Cозначает, что событие D есть объединение событий A, В и С.

Два события A и В называются несовместными, если наступление события A исключает наступление события В. Отсюда следует, что если события A и В несовместны, то событие AB — невозможное.

Рассмотрим следующий пример. Будем следить за движением какой-нибудь определенной молекулы газа, заключенного в некоторый объем. Внутри этого объема выделим объемы и , частично перекрывающие друг друга (рис. 1). Пусть событие A — попадание молекулы в объем , событие В — попадание молекулы в объем . Совмещением событий A и В является попадание молекулы в общую часть объемов и . Если объемы и не имеют общих точек, то ясно, что события A и В несовместны. Объединением событий A и В является попадание молекулы или только в объем или только в объем , или же в их общую часть.

 

 


2. Аксиомы вероятностей.

Пусть A и B — два несовместных события, причем в n испытаниях событие A произошло m1 раз, а событие В произошло m2 раз. Тогда частоты событий A и В соответственно равны P*(A)=m1/n, P*(B)=m2/n. Так как события A и В несовместны, то событие A+B в данной серии опытов произошло m1+m2 раз. Следовательно,

 

Таким образом, частота события A+B равна сумме частот событий A и В. Но при больших n частоты P*(A), P*(B) и P*(A+B) мало отличаются от соответствующих вероятностей P(A), P(B) и P(A+B). Поэтому естественно принять, что если A и В — несовместные события, то P(A+B)=P(A)+P(B)

Изложенное позволяет высказать следующие свойства вероятностей, которые мы принимаем в качестве аксиом.

Аксиома 1. Каждому случайному событию A соответствует определенное число Р(А), называемое его вероятностью и удовлетворяющее условию .

Аксиома 2. Вероятность достоверного события равна единице.

Аксиома 3 (аксиома сложения вероятностей). Пусть A и В — несовместные события. Тогда вероятность того, что произойдет хотя бы одно из этих двух событий, равна сумме их вероятностей:

P(A+B)=P(A)+P(B) (1)

 

Аксиома 3 допускает обобщение на случай нескольких событий, а именно: если события A1, A2, ..., An, попарно несовместны, то

(2)

 

Событием, противоположным событию , называется событие , состоящее в ненаступлении события . Очевидно, события и несовместны.

Пусть, например, событие состоит в том, что изделие удовлетворяет стандарту; тогда противоположное событие заключается в том, что изделие стандарту не удовлетворяет. Пусть событие — выпадение четного числа очков при однократном бросании игральной кости; тогда — выпадение нечетного числа очков.

Теорема 1. Для любого события вероятность противоположного события выражается равенством

(3)

 

Доказательство. Событие +, состоящее в наступлении или события , или события , очевидно, является достоверным. Поэтому на основании аксиомы 2 имеем Р(+)=1. Так как события и несовместны, то используя аксиому 3, получим Р(+)=Р()+P(). Следовательно, Р()+P()=1, откуда .

Теорема 2. Вероятность невозможного события равна нулю.

Доказательство непосредственно следует из аксиомы 2 и теоремы 1, если заметить, что невозможное событие противоположно достоверному событию.

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности.

Классическое определение вероятности... Как было сказано выше при большом числе n испытаний частота P A m n... Это обстоятельство позволяет находить приближенно вероятность события опытным путем Практически такой способ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Случайные события. Частота. Вероятность.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Условная вероятность. Теорема умножения вероятностей.
Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В. Рассмотрим следующий пример. Пусть брошены д

Формула полной вероятности.
Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1, H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A,

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность нас

Дискретные случайные величины.
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную посл

Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина

Равномерное распределение.
Пусть сегмент [a,b] оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от м

Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределе

Двумерные случайные величины.
Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими — в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические ва

Математическое ожидание случайной величины и его свойства.
Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом: m1 - число подшипников с внешним диаметром х1

Линейные функции случайных величин.
Пусть - нормально распределенная случайная величина с параметрами

Леммы Чебышева.
В этом пункте докажем следующие две леммы, принадлежащие Чебышеву* Лемма 1. Пусть

Закон больших чисел Чебышева.
Имеет место следующее утверждение. Пусть - последовательность попарно независимых случайн

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Теорема Ляпунова.
Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма име

Основной закон ошибок.
Когда мы производим некоторое измерение, то на его результат влияет большое количество факторов, которые порождают ошибки измерений. Ошибки измерений в основном можно подразделить на три группы: 1)

Определение неизвестной функции распределения.
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Ра

Определение неизвестных параметров распределения.
C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины

Коэффициент корреляции.
Как мы знаем, если и

Функции и линии регрессии.
Пусть и

Анализ линейной корреляции по опытным данным.
Одной из задач математической статистики является исследование корреляционной зависимости между случайными величинами. Пусть проведено n опытов, в результате которых получены следующие значе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги