рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дискретные случайные величины.

Дискретные случайные величины. - раздел Философия, ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности. Рассмотрим Случайную Величину * ...

Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную последовательность чисел x1, x2, ..., xn, ... . Пусть задана функция p(x), значение которой в каждой точке x=xi (i=1,2, ...) равно вероятности того, что величина примет значение xi

(16)


Такая случайная величина называется дискретной (прерывной). Функция р(х) называется законом распределения вероятностей случайной величины, или кратко, законом распределения. Эта функция определена в точках последовательности x1, x2, ..., xn, ... . Так как в каждом из испытаний случайная величина принимает всегда какое-либо значение из области ее изменения, то

 

Пример 1. Случайная величина — число очков, выпадающих при однократном бросании игральной кости. Возможные значения — числа 1, 2, 3, 4, 5 и 6. При этом вероятность того, что примет любое из этих значений, одна и та же и равна 1/6. Какой будет закон распределения ?

Решение: Таким образом, здесь закон распределения вероятностей есть функция р(х)=1/6 для любого значения х из множества {1, 2, 3, 4, 5, 6}.

 

Пример 2. Пусть случайная величина - число наступления события A при одном испытании, причем P(A)=p. Множество возможных значений состоит из 2-х чисел 0 и 1: =0, если событие A не произошло, и =1, если событие A произошло. Таким образом,

 

 

Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить событиеA. Пусть вероятность наступления события A при каждом испытании равна p. Рассмотрим случайную величину — число наступлений события A при n независимых испытаниях. Область изменения состоит из всех целых чисел от 0 до n включительно. Закон распределения вероятностей р(m) определяется формулой Бернулли (13'):

 

Закон распределения вероятностей по формуле Бернулли часто называют биномиальным, так как Pn(m) представляет собой m-й член разложения бинома .
Пусть случайная величина может принимать любое целое неотрицательное значение, причем

(17)


где — некоторая положительная постоянная. В этом случае говорят, что случайная величина распределена по закону Пуассона, Заметим, что при k=0 следует положить 0!=1.
Как мы знаем, при больших значениях числа n независимых испытаний вероятность Pn(m) наступления m раз события A удобнее находить не по формуле Бернулли, а по формуле Лапласа [см. формулу (15)]. Однако последняя дает большие погрешности при малой вероятности р появления события А в одном испытании. В этом случае для подсчета вероятности Pn(m) удобно пользоваться формулой Пуассона, в которой следует положить .
Формулу Пуассона можно получить как предельный случай формулы Бернулли при неограниченном увеличении числа испытаний n и при стремлении к нулю вероятности .

 


Пример 3. На завод прибыла партия деталей в количестве 1000 шт. Вероятность того, что деталь окажется бракованной, равна 0,001. Какова вероятность того, что среди прибывших деталей будет 5 бракованных?

Решение:

Здесь .

По формуле (17) находим

 

Распределение Пуассона часто встречается и в других задачах. Так, например, если телефонистка в среднем за один час получает Nвызовов, то, как можно показать, вероятность Р(k) того, что в течение одной минуты она получит k вызовов, выражается формулой Пуассона, если положить .

 

Если возможные значения случайной величины образуют конечную последовательность x1, x2, ..., xn, то закон распределения вероятностей случайной величины задают в виде следующей таблицы, в которой

и


Значения x1 x2 ... xn
Вероятности p(xi) p1 p2 ... pn

 

Эту таблицу называют рядом распределения случайной величины . Наглядно функцию р(х) можно изобразить в виде графика. Для этого возьмем прямоугольную систему координат на плоскости.

По горизонтальной оси будем откладывать возможные значения случайной величины , а по вертикальной оси - значения функции . График функции р(х) изображен на рис. 2. Если соединить точки этого графика прямолинейными отрезками, то получится фигура, которая называется многоугольником распределения.


 

 

Пример 4. Пусть событие А — появление одного очка при бросании игральной кости; Р(A)=1/6. Рассмотрим случайную величину — число наступлений события А при десяти бросаниях игральной кости. Значения функции р(х) (закона распределения) приведены в следующей таблице:

Значения
Вероятности p(xi) 0,162 0,323 0,291 0,155 0,054 0,013 0,002

 

Вероятности p(xi) вычислены по формуле Бернулли при n=10. Для x>6 они практически равны нулю. График функции p(x) изображен на рис. 3.


 


Дальше...

* Случайные величины будем обозначать малыми буквами греческого алфавита: , ... .

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности.

Классическое определение вероятности... Как было сказано выше при большом числе n испытаний частота P A m n... Это обстоятельство позволяет находить приближенно вероятность события опытным путем Практически такой способ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дискретные случайные величины.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Случайные события. Частота. Вероятность.
Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий). Случайным событием (или просто событием) называется всякое явление,

Условная вероятность. Теорема умножения вероятностей.
Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В. Рассмотрим следующий пример. Пусть брошены д

Формула полной вероятности.
Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1, H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A,

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность нас

Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина

Равномерное распределение.
Пусть сегмент [a,b] оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от м

Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределе

Двумерные случайные величины.
Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими — в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические ва

Математическое ожидание случайной величины и его свойства.
Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом: m1 - число подшипников с внешним диаметром х1

Линейные функции случайных величин.
Пусть - нормально распределенная случайная величина с параметрами

Леммы Чебышева.
В этом пункте докажем следующие две леммы, принадлежащие Чебышеву* Лемма 1. Пусть

Закон больших чисел Чебышева.
Имеет место следующее утверждение. Пусть - последовательность попарно независимых случайн

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Теорема Ляпунова.
Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма име

Основной закон ошибок.
Когда мы производим некоторое измерение, то на его результат влияет большое количество факторов, которые порождают ошибки измерений. Ошибки измерений в основном можно подразделить на три группы: 1)

Определение неизвестной функции распределения.
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Ра

Определение неизвестных параметров распределения.
C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины

Коэффициент корреляции.
Как мы знаем, если и

Функции и линии регрессии.
Пусть и

Анализ линейной корреляции по опытным данным.
Одной из задач математической статистики является исследование корреляционной зависимости между случайными величинами. Пусть проведено n опытов, в результате которых получены следующие значе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги