рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Функция распределения вероятностей случайной величины и ее свойства.

Функция распределения вероятностей случайной величины и ее свойства. - раздел Философия, ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности. Рассмотрим Функцию F(Х), Определенную На Всей Числовой Оси Следующим О...

Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина примет значение, меньшее х, т. е.

(18)


Эта функция называется функцией распределения вероятностей, или кратко, функцией распределения.

 

Пример 1. Найти функцию распределения случайной величины , приведенной в примере 1, п. 1.

Решение: Ясно, что если , то F(x)=0, так как не принимает значений, меньших единицы. Если , то ; если , то . Но событие <3 в данном случае является суммой двух несовместных событий: =1 и =2. Следовательно,


Итак для имеем F(x)=1/3. Аналогично вычисляются значения функции в промежудках , и . Наконец, если x>6 то F(x)=1, так как в этом случае любое возможное значение (1, 2, 3, 4, 5, 6) меньше, чем x. График функции F(x) изображен на рис. 4.

 

Пример 2. Найти функцию распределения случайной величины , приведенной в примере 2, п. 1.

Решение: Очевидно, что


График F(x) изображен на рис. 5.

 

Зная функцию распределения F(x), легко найти вероятность того, что случайная величина удовлетворяет неравенствам .
Рассмотрим событие, заключающееся в том, что случайняя величина примет значение, меньшее . Это событие распадается на сумму двух несовместных событий: 1) случайная величина принимает значения, меньшие , т.е. ; 2) случайная величина принимает значения, удовлетворяющие неравенствам . Используя аксиому сложения, получаем

 

Отсюда

 

Но по определению функции распределения F(x) [см. формулу (18)], имеем , ; cледовательно,

(19)


Таким образом, вероятность попадания дискретной случайной величины в интервал равна приращению функции распределения на этом интервале.

Рассмотрим основные свойства функции распределения.
1°. Функция распределения является неубывающей.
В самом деле, пусть <. Так как вероятность любого события неотрицательна, то . Поэтому из формулы (19) следует, что , т.е. .

2°. Значения функции распределения удовлетворяют неравенствам .
Это свойство вытекает из того, что F(x) определяется как вероятность [см. формулу (18)]. Ясно, что * и .

3°. Вероятность того, что дискретная случайная величина примет одно из возможных значений xi, равна скачку функции распределения в точке xi.
Действительно, пусть xi - значение, принимаемое дискретной случайной величиной, и . Полагая в формуле (19) , , получим

(20)


В пределе при вместо вероятности попадания случайной величины на интервал получим вероятность того, что величина примет данное значение xi:


C другой стороны, получаем , т.е. предел функции F(x) справа, так как . Следовательно, в пределе формула (20) примет вид

(21)


т.е. значение p(xi) равно скачку функции ** xi. Это свойство наглядно иллюстрируется на рис. 4 и рис. 5.

 

* Здесь и в дальнейшем введены обозначения: , .
** Можно показать, что F(xi)=F(xi-0), т.е. что функция F(x) непрерывна слева в точке xi.

 


3. Непрерывные случайные величины.

Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х). Однако их можно задать с помощью функции распределения вероятностей F(х). Эта функция определяется точно так же, как и в случае дискретной случайной величины:


Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х.
Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.
Случайная величина называется непрерывной, если для нее существует неотрицательная кусочно-непрерывная функция* , удовлетворяющая для любых значений x равенству

(22)


Функция называется плотностью распределения вероятностей, или кратко, плотностью распределения. Если x1<x2, то на основании формул (20) и (22) имеем

(23)


Исходя из геометрического смысла интеграла как площади, можно сказать, что вероятность выполнения неравенств равна площади криволинейной трапеции с основанием [x1,x2], ограниченной сверху кривой (рис. 6).


Так как , а на основании формулы (22)

, то

(24)


Пользуясь формулой (22), найдем как производную интеграла по переменной верхней границе, считая плотность распределения непрерывной**:

(25)


Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х, где функция непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.
На основании формулы (23), полагая x1=x, , имеем


В силу непрерывности функции F(х) получим, что


Следовательно


Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю.
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств

, , ,


Имеют одинаковую вероятность, т.е.


В самом деле, например,


так как

Замечание. Как мы знаем, если событие невозможно, то вероятность его наступления равна нулю. При классическом определении вероятности, когда число исходов испытания конечно, имеет место и обратное предложение: если вероятность события равна нулю, то событие невозможно, так как в этом случае ему не благоприятствует ни один из исходов испытания. В случае непрерывной случайной величины число возможных ее значений бесконечно. Вероятность того, что эта величина примет какое-либо конкретное значение x1 как мы видели, равна нулю. Однако отсюда не следует, что это событие невозможно, так как в результате испытания случайная величина может, в частности, принять значение x1. Поэтому в случае непрерывной случайной величины имеет смысл говорить о вероятности попадания случайной величины в интервал, а не о вероятности того, что она примет какое-то конкретное значение.
Так, например, при изготовлении валика нас не интересует вероятность того, что его диаметр будет равен номиналу. Для нас важна вероятность того, что диаметр валика не выходит из поля допуска.

 

 

Пример. Плотность распределения непрерывной случайной величины задана следующим образом:


График функции представлен па рис. 7. Определить вероятность того, что случайная величина примет значение, удовлетворяющее неравенствам .Найти функцию распределения заданной случайной величины.

 

Решение:

Используя формулу (23), имеем


По формуле (22) находим функцию распределения F(x) для заданной случайной величины.

Если , то

 

Если , то

 

Если x>4, то

 

Итак,


График функции F(x) изображен на рис. 8.

 

 

Следующие два пункта посвящены часто встречающимся на практике распределениям непрерывных случайных величин — равномерному и нормальному распределениям.

 

 

* Функция называется кусочно-непрерывной на всей числовой оси, если она на любом сегменте или непрерывна, или имеет конечное число точек разрыва I рода.
** Правило дифференцирования интеграла с переменной верхней границей, выведенное в случае конечной нижней границы, остается справедливым и для интегралов с бесконечной нижней границей. В самом деле,


Так как интеграл

есть величина постоянная.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности.

Классическое определение вероятности... Как было сказано выше при большом числе n испытаний частота P A m n... Это обстоятельство позволяет находить приближенно вероятность события опытным путем Практически такой способ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Функция распределения вероятностей случайной величины и ее свойства.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Случайные события. Частота. Вероятность.
Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий). Случайным событием (или просто событием) называется всякое явление,

Условная вероятность. Теорема умножения вероятностей.
Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В. Рассмотрим следующий пример. Пусть брошены д

Формула полной вероятности.
Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1, H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A,

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность нас

Дискретные случайные величины.
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную посл

Равномерное распределение.
Пусть сегмент [a,b] оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от м

Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределе

Двумерные случайные величины.
Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими — в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические ва

Математическое ожидание случайной величины и его свойства.
Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом: m1 - число подшипников с внешним диаметром х1

Линейные функции случайных величин.
Пусть - нормально распределенная случайная величина с параметрами

Леммы Чебышева.
В этом пункте докажем следующие две леммы, принадлежащие Чебышеву* Лемма 1. Пусть

Закон больших чисел Чебышева.
Имеет место следующее утверждение. Пусть - последовательность попарно независимых случайн

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Теорема Ляпунова.
Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма име

Основной закон ошибок.
Когда мы производим некоторое измерение, то на его результат влияет большое количество факторов, которые порождают ошибки измерений. Ошибки измерений в основном можно подразделить на три группы: 1)

Определение неизвестной функции распределения.
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Ра

Определение неизвестных параметров распределения.
C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины

Коэффициент корреляции.
Как мы знаем, если и

Функции и линии регрессии.
Пусть и

Анализ линейной корреляции по опытным данным.
Одной из задач математической статистики является исследование корреляционной зависимости между случайными величинами. Пусть проведено n опытов, в результате которых получены следующие значе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги