рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Расчет рамы на кручение

Расчет рамы на кручение - раздел Философия, ГЛАВА 1. НАГРУЗКИ И МЕТОДЫ ИХ МОДЕЛИРОВАНИЯ Наряду С Высокой Изгибной Прочностью Рамы Должны Иметь Достаточную Прочность ...

Наряду с высокой изгибной прочностью рамы должны иметь достаточную прочность на кручение: переезд дорожных неровностей всегда сопровождается кручением рамы.

Закручивающий раму момент зависит от высоты дорожных неровностей, по которым движется автомобиль, ширины его колеи, а также жесткости рамы и подвески автомобиля:

Мкр = ,

где Мкр – момент, закручивающий раму;

Ср – угловая (крутильная) жесткость рамы;

f - высота неровности;

В – колея;

Сп – угловая жесткость подвески.

Из формулы следует, что чем меньше жесткость рамы ( Ср), т.е., чем она эластичнее, тем меньше закручивающий момент и, следовательно, выше прочность рамы. Кроме того, более эластичная рама (совместно с подвеской) дает лучшую приспособляемость колесам автомобиля к неровностям дороги и не позволяет им терять с нею контакт.

Однако, излишняя эластичность рамы нежелательна, так как она нарушает взаимную увязку и центровку агрегатов и частей автомобиля. Оптимальная жесткость автомобильных рам на кручение выбирается путем комплексных доводочных испытаний ходовой части автомобиля.

Углы закручивания лонжеронных рам обычно составляют 5-10о, но иногда достигают и больших значений (15-20о при преодолении кюветов, ям и других препятствий).

Крутильная жесткость рам равна:

для штампованных рам типа Зил-131 - Ср = 28-35 кг· м/град;

для рам тяжелых автомобилей типа КрАЗ-255Б собранных из профильного проката - Ср = 200-300 кг· м/град.

Расчет рам на кручение ведется по упрощенной схеме. Рама рассматривается как плоская система, состоящая из прямолинейных тонкостенных стержней. Действующие на стержни нагрузки считаются приложенными перпендикулярно к плоскости рамы.

В связи с тем, что жесткость на изгиб применяемых в рамах профилей в сотни раз превышает жесткость на кручение, деформациями изгиба стержней в расчетах пренебрегают.

Результирующие касательные напряжения кручения при деформации стержней рамы в общем случае складываются из трех компонентов:

- касательных напряжений свободного кручения;

- касательных напряжений изгиба;

- касательных напряжений стесненного кручения.

Как показывают результаты расчетов и анализ экспериментальных данных, наиболее значительными являются касательные напряжения свободного кручения.

Другие компоненты на результирующие напряжения оказывают несущественное влияние (в совокупности не превышают 10-15 %). Поэтому обычно при проектировании рам определяются и учитываются только напряжения свободного кручения.

Основными расчетными формулами здесь являются:

- для стержней открытого профиля

τ = ;

где - для стержней закрытого профиля (круглого и коробчатого)

τ = ,

где G – модуль упругости 2-го рода, принимаемый для сталей равным

8-105 кг/см2;

К – изгибно-крутильная характеристика поперечного сечения стержня;

Q – удвоенная площадь контура, ограниченного средней линией

сечения;

S – удвоенный периметр контура, образованного средней линией

сечения (см. таблицу);

α - угол закрутки рамы на длине базы

α =

L – база (расстояние между осями автомобиля).

Изгибно-крутильная характеристика Кравна

К = ,

где ℓ - длина закручиваемого стержня;

Jк – момент инерции сечения при кручении.

Удельная площадь контура Q равна

Q = 2 вh

Удвоенный периметр контура S равен

S = 2 (в + h)

Касательные напряжения τ для стержней открытого профиля сравнительно невелики, и размеры таких стержней при расчетах следует определять по величине нормальных напряжений изгиба σ.

Так для автомобилей Зил напряжения при закрутке рам на угол

α = 10-12о составляет (по опытным данным):

- касательные напряжения в середине полок и середине стенок

τ ≈ 50-200 кг/см2 (меньшие значения – для лонжеронов, большие – для поперечин);

- нормальные напряжения σ = ±1000-3000 кг/см2.

Поскольку аналитические методы расчета рам весьма приближенны и не всегда позволяют точно выявить места наибольших напряжений, при проектировании рам проводится их экспериментальные исследования. При выполнении этих исследований широко применяется метод электротензометрирования.

 

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА 1. НАГРУЗКИ И МЕТОДЫ ИХ МОДЕЛИРОВАНИЯ

Расчетные режимы деталей двигателей При расчете деталей на прочность выбирают... Кинематический расчет трансмиссии Определение... Карданные передачи ведущих мостов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Расчет рамы на кручение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Расчетные режимы деталей двигателей
  При расчете деталей на прочность выбирают наиболее тяжелые из возможных режимов работы двигателей. Учитывая, что инерционная нагрузка обычно снижает газовую нагрузку и их совместное

Расчетные нагрузки деталей двигателей
  Детали двигателей внутреннего сгорания подвергаются воздействию: - нагрузок от сил давления газов, сил инерции, сил трения и сил полезных сопротивлений; - тепловых

Подбор двигателя
  Одной из основных задач тягового расчета является выбор мощности двигателя для рассчитываемой машины. Мощность двигателя должна быть достаточной для обеспечения движения машины с за

Определение диапазона трансмиссии
  Кинематический расчет трансмиссии сводится к определению передаточных чисел агрегатов и механизмов, составляющих трансмиссию машины. Для определения передаточных чисел КП и

Определение передаточных чисел коробки передач
  Передаточное число I-ой передачи выбирается из условия получения максимальной величины динамического фактора машины. Чтобы полностью использовать опорно-сцепные качества машины, мак

Определение передаточного числа главной передачи
  Передаточное число главной передачи iгп определяется исходя из получения максимальной скорости на высшей передаче по формуле:  

Определение основных размеров деталей муфты сцепления
  Основной задачей расчета является выбор числа и размеров поверхностей трения муфты. Расчетный статический момент трения Mм расч муфты может быть определен

Выбор основных размеров и параметров зубчатых колес
и главных передач   Исходными данными для предварительного выбора основных размеров и параметров зубчатых колес главных передач являются: максимальное значение крутящего моме

Определение основных параметров сцепления
  Сцепление автомобиля представляет собой блокировочную муфту, служащую для кратковременного разъединения двигателя и трансмиссии и плавного соединения их вновь, а также для предохран

Расчет сцепления на удельную работу буксования
  Задачей расчета сцепления является определение по заданному передаваемому крутящему моменту двигателя геометрических и силовых параметров сцепления (расчетного момента, силы сжатия

Конструкция и расчет механического привода
  Механический привод состоит из педали управления, системы рычагов, валов и тяг, связывающих педаль с муфтой выключения сцепления. Валы и тяги изготовляются из стали 30 и 35

Требования к карданным передачам. Выбор основных параметров
5.4.1. Требования к карданным передачам   К карданной передаче автомобиля предъявляют следующие основные требования: обеспечение необходимой равномерности вращения в

Размер шарнира карданного вала
  Согласно отраслевого стандарта «Шарниры карданные неравных угловых скоростей», «Основные размеры и технические требования» определяют типаж (типоразмеры) карданных шарниров, обеспеч

Конструкция и расчет карданных передач
В карданной передаче рассчитывают следующие элементы: карданный вал (на кручение, растяжение – сжатие, угол закручивания); вилку и крестовину (на прочность и износ); подш

Конструкция и расчет рамы и корпуса гусеничной машины
6.1.1. Расчет рам Типы рам и требования, предъявляемые к раме   Рама является остовом автомобиля. На ней устанавливаются двигатель, агрегаты трансмиссии и ходовой ча

Конструкция рам
Лонжеронные рамы состоят из двух продольных балок специального профиля (лонжеронов), поперечин и местных усилителей (там, где это требуется). Лонжероны изготавливаются шта

Выбор типа и основных параметров подвески
Подвеской называется совокупность устройств и деталей, соединяющих корпус (раму) автомобиля с его колесами. Через подвеску вес автомобиля передается на колеса и распределяет

Двухосные автомобили
Для производства предварительного расчета следует определить коэффициент распределения масс машины: , гд

Расчет рессор
Рассмотрим схему полуэллиптической симметричной листовой рессоры. Точки подвеса к раме машины расположены у них на одинаковых расстояниях ℓ от середины опорной части.

Расчет амортизаторов
Амортизаторами называются специальные устройства, предназначенные для быстрого гашения колебаний корпуса (рамы) автомобиля, точнее, для рассеивания (превращение в тепло) энергии колебательного движ

Торсионы
Торсионные упругие элементы, или просто торсионы, находят применение в независимых подвесках. Их основными преимуществами является повышенная энергоемкость, удобство компоновки, в частности, возмож

Балансир
Балансир 3 (рис. 6.15) стальной, литой, в середине пустотелый. В отверстие верхней головки балансира запрессована ось 7 балансира, а в отверстие нижней головки – ось 1 катка. Ось балансира и ось ка

Общая характеристика плавности хода
Подвеска в автомобиле предназначена для упругой связи рамы (кузова) с колесами или мостами, а также смягчения толчков и ударов от воздействия дорожных неровностей при наезде на них колёс.

Характеристика подвески
Характеристикой подвески называют зависимость между величиной приложенной силы Р и деформацией f упругого элемента.

Расчет свободных (собственных) колебаний
По своему характеру колебания подразделяются на свободные и вынужденные. Свободные (собственные) колебания совершает тело, выведенное из состояния равновесия. Они могут бы

Собственные колебания автомобиля
После проезда неровностей автомобиль на дороге с ровной поверхностью совершает собственные (свободные) колебания. Частота свободных колебаний существенно влияет на плавность хода автомобил

Расчет переходных процессов в силовых цепях
Круговое движение автомобиля возникает не сразу после поворота колес на постоянный угол θ. В результате поворота колес возникают силы, изменяющие определенным образом направление движения авто

И механического тормозного привода
Для снижения скорости движения автомобиля, быстрой остановки и удержания его на стоянках всякий автомобиль оборудуется тормозами. На современных автомобилях имеются две системы тормозов: о

Расчет колесных тормозных механизмов
На современных автомобилях самым распространенным колесным тормозным механизмом основной тормозной системы является колодочный тормоз барабанного типа. Рассмотрим действие этого тормоза и

Расчет механического тормозного привода
На современных автомобилях механический тормозной привод применяется как ручной привод к стояночному тормозу. В основных тормозных системах механический привод не применяется из-за присущи

Конструкция и расчет гидравлического и пневматического приводов
Гидравлический тормозной привод широко применяется в основных тормозных системах легковых автомобилей и автомобилей малой и средней грузоподъемности. По принципу действия гидравлические то

Расчет гидравлического тормозного привода
В простом гидравлическом приводе (рис.8.6) для включения колесных тормозных механизмов используется мускульная энергия водителя. Водитель с усилием Q нажимает на тормозную педаль 1. У

Разновидности привода и принципиальные схемы
Пневматический привод применяется на автомобилях и автомобильных поездах средней, большой и особо большой грузоподъемности. Благодаря использованию энергии сжатого воздуха этот

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги