рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Образец решения контрольной работы № 2.

Образец решения контрольной работы № 2. - раздел Философия, Часть 1. ПРОГРАММА КУРСА Элементы векторной алгебры и аналитической геометрии. Задание 1. Найти Пределы Функций. 1) ...

Задание 1. Найти пределы функций.

1)

2) ; 3) .

Решение. 1) Данный предел в зависимости от значений вычисляется разными способами.

а) . Найдем значения функций, стоящих в числителе и в знаменателе дроби, в точке : . Так как полученные значения конечны и отличны от нуля, то по теореме о пределе частного, учитывая непрерывность функций, предел равен значению частного в предельной точке: ;

б) . Найдем новые значения и в точке : . Так как числитель и знаменатель дроби оба равны нулю, то заданное отношение в точке является неопределенностью вида и применять теорему о пределе частного нельзя. Для нахождения предела в этом случае выделим в числителе и знаменателе критический множитель , создающий неопределенность вида при . С этой целью найдем корни уравнений и , затем разложим квадратные трехчлены на линейные множители и после сокращения дроби на общий критический множитель найдем предел оставшегося выражения, применяя теорему о пределе частного как в случае пункта а):

;

в) . При имеем и , т. е. заданное отношение при является неопределенностью вида и теорему о пределе частного применять нельзя. Для нахождения в этом случае предела дроби опять выделим в числителе и знаменателе критический множитель, который представляет собой старшую степень переменной . В данном случае это есть . После сокращения дроби на критический множитель применим теорему о пределе частного и следующие равенства, известные из теории пределов: , , .

Получим:

.

2) Найдем значения функций и , стоящих в числителе и знаменателе дроби, в точке : , . Следовательно, заданное отношение при является неопределенностью вида . Для нахождения предела отношения выделим в числителе и в знаменателе критический множитель , создающий неопределенность, и сократим на него дробь. С этой целью умножим числитель и знаменатель на выражение сопряженное знаменателю и используем формулу сокращенного умножения разности квадратов: :

.

По теореме о пределе корня , получим:

.

3) . Найдем значения функций и в точке : и . Следовательно, заданное отношение представляет собой при неопределенность вида . Вычислим этот предел, применяя формулу первого замечательного предела: и равенство , вытекающее из непрерывности в точке функции . С этой целью преобразуем заданный предел следующим образом:

.

Ответ: 1), а) ; б) ; в) . 2) . 3) 3.

Задание 2. Найти производные заданных функций.

1) ; 2) ;

3) .

Решение. 1) .

Используем правило дифференцирование суммы и правила дифференцирования сложной функции вида , где , а также таблицу производных. Получим:

.

2) .

Используем правило дифференцирование суммы и правила дифференцирования сложных функций вида

,

где , а также таблицу производных. Получим:

.

3) .

Используем правило дифференцирования суммы , правило дифференцирования произведения и правила дифференцирования сложных функций вида

,

где , а также таблицу производных. Получим:

.

Ответ: 1) ; 2) ; 3) .

Задание 3. Провести полное исследование функции и построить ее график.

Решение. 1) Найдем область определения, интервалы непрерывности и точки разрыва функции.

Функция определена на всей числовой оси, кроме точки , т. е. . В каждой точке области определения функция непрерывна. Точка есть точка разрыва функции, т. к. знаменатель функции в этой точке равен нулю, а числитель отличен от нуля.

2) Выясним четность, нечетность и периодичность функции.

, т. е. . Следовательно, функция не является ни четной, ни нечетной.

Функция непериодична, т. к. , где Т – некоторое действительное число.

3) Найдем асимптоты графика функции (вертикальные, горизонтальные и наклонные).

а) Вертикальные асимптоты.

Так как точка оси Ox есть точка разрыва функции, то прямая линия , перпендикулярная оси Ox, есть вертикальная асимптота графика. Исследуем поведение графика функции вблизи вертикальной асимптоты по односторонним пределам функции. Возьмем слева от точки близкое значение, например, и вычислим в нем значение функции и ее знак:

.

Так как это значение отрицательно, и функция слева от точки непрерывна, то она сохраняет знак и .

Теперь возьмем справа от точки близкое значение, например, :

.

Так как это значение положительно, и функция справа от точки непрерывна, то при переходе к пределу функция сохраняет знак и .

Таким образом, слева от точки функция отрицательна, а справа от точки – положительна и имеет односторонние пределы, равные бесконечности. Такая точка называется точкой разрыва второго рода (или точкой бесконечного разрыва функции).

б) Горизонтальные асимптоты.

Для нахождения горизонтальной асимптоты нужно найти предел функции при , раскрывая неопределенность вида . Если существует конечный предел , то прямая, определяемая уравнением , есть горизонтальная асимптота графика. Если же этот предел равен бесконечности, то горизонтальной асимптоты нет. Найдем предел:

.

Предел равен бесконечности, значит горизонтальной асимптоты нет.

в) Наклонные асимптоты.

Наклонная асимптота имеет уравнение прямой линии с угловым коэффициентом вида , где , . Если , то наклонной асимптоты не существует.

Найдем оба указанных предела для заданной функции:

,

.

Таким образом, график имеет наклонную асимптоту .

4) Найдем интервалы возрастания и убывания функции, точки экстремума и экстремумы функции.

Находим сначала первую производную функции:

.

Так как точка , в которой не существует, не принадлежит области определения функции, то критическими точками первого рода являются лишь точки, в которых или , т. е. .

Критические точки и точка разрыва разбивают ось Ox на 4 интервала монотонности функции. По знаку производной в этих интервалах определяем интервалы возрастания и убывания функции, точки экстремума и экстремумы функции. Полученные данные заносим в табл. 1.

Таблица 1.

+ не сущ. +
ä –8 max æ не сущ. æ min ä

 

5) Найдем интервалы выпуклости и вогнутости графика функции, точки перегиба.

Находим сначала вторую производную функции:

.

Так как точкане принадлежит области определения функции и , то критических точек второго рода нет.

Точка разрыва разбивают числовую ось Ox на 2 интервала, в которых по знаку второй производной определяем интервалы выпуклости и вогнутости графика. Полученные данные заносим в табл. 2.

Таблица 2.

не сущ. +
Ç выпуклый не сущ. È вогнутый

 

6) Находим точки пересечения графика функции с осями координат, решая две системы уравнений.

С осью Ox:

А(1; 0) – точка пересечения графика с осью Ox.

С осью Oy:

В(0; 1) – точка пересечения графика с осью .

7) Используя результаты исследования, строим график функции в такой последовательности: а) рисуем вертикальную асимптоту и наклонную асимптоту , подписываем их; б) изображаем максимум функции в точке и минимум в точке ; в) наносим на осях точки А(1; 0) и В(0; 1) пересечения графика с осями координат; г) нанесенные на плоскость точки соединяем гладкими линиями с учетом табл. 1 и 2 и поведения функции вблизи асимптот.

 
 

 


Задание 4. Доказать, что функция удовлетворяет уравнению .

Решение. По определению частной производной находим , считая переменную y фиксированной постоянной величиной:

Аналогично находим частную производную считая переменную x фиксированной постоянной величиной:

Находим смешанную частную производную 2-го порядка, используя правило дифференцирования произведения двух функций:

Подставляем найденные частные производные в данное уравнение:

.

Ответ: что и требовалось доказать.

 

3.1. Контрольная работа № 3. «Интегральное исчисление».

1. Найти неопределенные интегралы. Результаты проверить дифференцированием.

1. 1) ; 2) ;

3) ; 4) .

2. 1) ; 2) ;

3) ; 4) .

3. 1) ; 2) ;

3) ; 4) .

4. 1) ; 2) ;

3) ; 4) .

5. 1) ; 2) ;

3) ; 4) .

6. 1) ; 2) ;

3) ; 4) .

7. 1) ; 2) ;

3) ; 4) .

8. 1) ; 2) ;

3) ; 4) .

9. 1) ; 2) ;

3) ; 4) .

10. 1) ; 2) ;

3) ; 4) .

2. Вычислить по формуле Ньютона-Лейбница определенный интеграл.

1. . 2. . 3. .

4. . 5. . 6. .

7. . 8. . 9. .

10. .

3. Вычислить площадь фигуры, ограниченной графиками функций. Сделать чертеж.

1. , . 2. , .

3. , . 4. , .

5. , . 6. , .

7. , . 8. , .

9. , . 10. , .

4. Вычислить объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной графиками функций.

1. , , . 2. , , .

3. , , . 4. , , .

5. , , . 6. , , .

7. , , . 8. , , .

9. , , . 10. , , .

– Конец работы –

Эта тема принадлежит разделу:

Часть 1. ПРОГРАММА КУРСА Элементы векторной алгебры и аналитической геометрии.

Волгоградский государственный архитектурно строительный университет... Волжский институт строительства и технологий...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Образец решения контрольной работы № 2.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Заочной и ускоренной форм обучения
  Волжский, 2010 год Абрамов Е.В., Илларионова Е.Д., Волченко Е.Ю.   Данная работа охватывает курс высшей математики, читаемый студентам экономиче

Элементы векторной алгебры и аналитической геометрии.
1) Определители второго и третьего порядков. Решение системы линейных уравнений по формулам Крамера. Системы декартовых координат на прямой, на плоскости и в пространстве. Векторы на плоскости и в

Теория вероятностей.
1) Определение события. Случайные, достоверные и невозможные события. Основные операции над событиями. Основные свойства операций над событиями. Определение поля событий. Определение совместимых, н

Решение задач.
1) Чтение учебника или конспекта должно сопровождаться решением задач, для чего рекомендуется завести специальную тетрадь. Полезно до начала вычислений составить краткий плен решения. Решения задач

Зачеты и экзамены.
На экзаменах и зачетах выясняется, прежде всего, отчетливое усвоение всех теоретических и прикладных вопросов программы и умение применять полученные знания к решению практических задач. Определени

Часть 4. КОНТРОЛЬНЫЕ ЗАДАНИЯ
1.1. Контрольная работа № 1. «Аналитическая геометрия и векторная алгебра». 1. Даны вершины A(x1; y1), B(x2

Простейшие задачи на плоскости
1. Расстояние между двумя точками и в

Различные виды уравнения прямой на плоскости
4. Уравнение прямой, проходящей через данную точку в данном направлении

Кривые второго порядка
15. Окружностью радиуса R с центром в точке C(a; b) называется геометрическое место точек плоскости, для которых расстояние до центра С постоянно равно R.

Элементы векторной алгебры.
1. Вектором с началом в точке А и концом в точке В называется направленный отрезок. 2. Если

Различные виды уравнения плоскости
1. Общее уравнение плоскости: , где –

Взаимное расположение двух плоскостей
6. Угол между плоскостью с нормальным вектором

Различные виды уравнений прямой в пространстве
10. Общие уравнения прямой: где и

Взаимное расположение двух прямых в пространстве
14. Угол между прямой с направляющим вектором

Взаимное расположение прямой с плоскостью
17. Угол между прямой с направляющим вектором

Образец решения контрольной работы № 1.
Задание 1. Даны вершины А(–1; 0), В(5; 2), С(2; 4) треугольника ABC. Найти: 1) длину стороны АВ; 2) уравнение медианы CM, проведенной из в

Важные исключения из теоремы
6) Если и , то частное

Замечательные пределы
9) Первый замечательный предел: . 10) Основные следствия из первого замечательного предела:

Механический смысл производной
23. Производная от функции в точке

Применение производной
26. Если на некотором промежутке , то на этом промежутке функция

Касательная плоскость и нормаль к поверхности
4. Частные производные , функции дв

Экстремум функции двух переменных
11. Необходимые условия экстремума функции :

Определенный интеграл
1. Пусть на отрезке [a; b] задана функция f(x). Произвольным образом разобьем отрезок [a; b] на n частей точками a = x0 <

Образец решения контрольной работы № 3.
Задание 1.Найти неопределенные интегралы. Результаты проверить дифференцированием. 1) ; 2)

Дифференциальные уравнения
1. Равенство вида , содержащее независимую переменную x, искомую функцию y = y(x) и ее п

Положительные числовые ряды
4. Первый признак сравнения рядов. Пусть даны два положительных ряда и

Знакопеременные и знакочередующиеся ряды
10. Признак Лейбница. Пусть дан знакочередующийся ряд , где an > 0. Если 1) члены знакоч

Образец решения контрольной работы № 4.
Задание 1. Найти общее решение линейного дифференциального уравнения первого порядка и частное реше

Элементы комбинаторики
9. Правило суммы. Если из некоторого конечного множества первый объект (или элемент) x можно выбрать n способами, а другой объект y из того же множества можно выбрать

Аксиомы теории вероятностей
14. Аксиома неотрицательности: с каждым событием A связывается число P(A), называемое вероятностью события A и удовлетворяющее условию 0£P(A)&

Свойства вероятности
20. Вероятность невозможного события равна нулю, т. е. P(V)=0. 21. Сумма вероятностей противоположных событий равна единице, т. е. P(A)+

Законы распределения дискретной случайной величины
4. Геометрический закон: , где

Числовые характеристики дискретной случайной величины
7. Математическим ожиданием дискретной случайной величины называется число . 8. Основные свойства

Непрерывные случайные величины
12. Непрерывной называется случайная величина, значения которой непрерывно заполняют некоторый интервал .

Законы распределения непрерывной случайной величины
20. Равномерное распределение:

Образец решения контрольной работы № 5.
Задание 1. На заочном отделении 80% всех студентов работают по специальности. Какова вероятность того, что из трёх отобранных случайным образом студентов по специальности работают:

Решение.
1) Воспользуемся определением дифференциальной функции. При x £ 0 и при x > 2 имеем . При 0 &

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги