рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Проверочные тесты

Проверочные тесты - раздел Образование, АНАЛИТИЧЕСКИЕ И ИМИТАЦИОННЫЕ МОДЕЛИ Программная Реализация Датчика Псевдослучайных, Квазиравномерно Распределенны...

Программная реализация датчика псевдослучайных, квазиравномерно распределенных чисел может быть получена любым программистом на основе разработанного им алгоритма с применением либо аналитических методов, либо методов перемешивания. Качество датчика необходимо проверить. Осуществляются проверки путем применения проверочных тестов. Рассмотрим проверочные тесты.

Тест частот. Отрезок [0,1] разбивается на m (обычно 10-20) равных интервалов, как это показано на рис. 4.6.

Рис. 4.6

 

Датчик псевдослучайных, квазиравномерно распределенных чисел генерирует N величин, каждая из которых принадлежит одному из m отрезков.

В результате проведения N испытаний будут получены эмпирические частоты ni, представляющие собой число попаданий чисел датчика в интервал i, i=. Деление частот ni на число опытов N даст эмпирические частоты.

Если рассматривать теоретическое равномерное распределение случайной величины на отрезке [0,1], то теоретические вероятности попадания в каждый из m отрезков одинаковы и равны значению 1/m.

Для проверки согласия датчика псевдослучайных, квазиравномерно распределенных чисел и теоретического равномерного распределения полученные эмпирические частости ni/N,(i=), сравнивают с теоретическими вероятностями 1/m. Согласие проверяется по критерию c2, т.к. случайная величина

(4.7)

подчиняется распределению c2с (m-1) степенями свободы, где N - объем выборки (число опытов).

На рис. 4.7 приведен алгоритм теста частот. Рассмотрим его работу.

 

 

Рис. 4.7

 

В подпрограмме WWOD осуществляется ввод исходных данных для моделирования: N=0 - начальный такт моделирования; NZ - заданное число тактов моделирования (число опытов); m – число интервалов разбиения отрезка [0,1]. В подпрограмме WWOD также осуществляется обнуление необходимых для работы идентификаторов и счетчиков.

В блоке 2 происходит наращивание тактов моделирования. В блоке 3 датчиком случайных чисел генерируется число Х. Затем это число Х сравнивается с правыми границами интервалов разбиения отрезка [0,1]. Для этого в блоках 4 - 6 организован цикл по переменной I и сравнение числа Х с числом А, которое последовательно принимает значения: 1/m, 2/m, 3/m,…, m/m.

При выполнении условия Х£A содержимое соответствующего счетчика увеличивается на единицу (см. блок 7).

В блоке 8 осуществляются проверки выполнения числа опытов. Если датчик псевдослучайных, квазиравномерно распределенных чисел выполнил генерацию заданного числа опытов NZ, то в блоке 9 происходит вычисление случайной величины c2.

В подпрограмме WIWOD (см. блок 10) на экран дисплея выводятся значения случайной величины c2, счетчиков K[I], в которых подсчитаны частоты ni, а также могут быть выведены гистограммы эмпирических частостей =ni/N=K[I]/NZ, как это показано на рис. 4.8.

На рис. 4.8 приведены гистограммы для заданного числа опытов NZ =10000. Очевидно, что форма гистограммы частот должна совпадать с формой гистограммы частостей, т.к. эмпирические частости определяются по формуле =K[I]/NZ.

 

Рис. 4.8

 

Тесты пар частот. Пусть датчик псевдослучайных, квазиравномерно распределенных чисел генерирует последовательность чисел Х12,...,ХN. Рассматриваются последовательные пары случайных чисел. Квадрат со сторонами [0,1]на [0,1] делится на m2 частей, как это показано на рис. 4.9.

Если пары образовать в виде 12), (Х34)..., то каждая пара случайно попадает в одно из m2 делений квадратной таблицы. Пары 12), (Х34)... взаимно независимы и результат их попадания в одно из m2 делений квадратной таблицы оценивается эмпирической частотой nij.

 

Рис. 4.9

 

Если рассматривать теоретическое равномерное распределение случайной величины на отрезке [0,1] и образование из чисел таких же пар, то теоретические вероятности попадания в каждый из m2 делений квадратной таблицы одинаковы и равны значению 1/m2.

Для проверки согласия по данному тесту пар частот датчика псевдослучайных, квазиравномерно распределенных чисел и теоретического равномерного распределения полученные эмпирические частости 2nij/N,(i,j=), сравнивают с теоретическими вероятностями 1/m2. Согласие проверяется по критерию c2, т.к. случайная величина

(4.8)

распределена по закону c2 с (m2-m) степенями свободы, где N/2 - объем выборки пар случайных величин, генерированных датчиком псевдослучайных, квазиравномерно распределенных чисел. На рис. 4.10 приведен алгоритм для рассмотренного теста пар частот.

 

 

Рис. 4.10

 

В подпрограмме WWOD осуществляется ввод исходных данных для моделирования:

- N=0- начальный такт моделирования;

- NZ- заданное число тактов моделирования;

- m -число интервалов разбиения отрезка [0,1], происходит обнуление необходимых для работы идентификаторов и счетчиков.

В блоке 2 происходит наращивание тактов моделирования. В блоке 3 датчиком случайных чисел генерируется число Х. Затем в блоках 4 – 6 определяется индекс I. В блоке 7 датчиком случайных чисел генерируется второе число Х (тем самым образована пара 12)). В блоках 8 – 10 определяется индекс J.

В блоке 11 в счетчиках K[I,J] осуществляется подсчет частот попадания случайных пар kр) в соответствующие деления квадратной таблицы. В блоке 12 осуществляются проверки выполнения числа опытов. Если датчик псевдослучайных, квазиравномерно распределенных чисел выполнил генерацию заданного числа опытов NZ/2, то в блоке 13 происходит вычисление случайной величины c2. В подпрограмме WIWOD (см. блок 14) на экран дисплея выводятся значения случайной величины c2, счетчиков K[I,J], значения эмпирических частостей =2nij/N=2K[I,J]/NZ. Генерируемая выборка в данном методе используется неэффективно. Можно пары образовать в следующем виде 12),(Х23),(Х34),... .

Этот метод образования пар более эффективен, т.к. полнее использует выборку чисел, но из-за зависимостей пар случайная величина c2определится по формуле

], (4.9)

где .

Случайная величина c2будет определена распределением c2 с (m2-m) степенями свободы.

На рис. 4.11 приведен алгоритм для рассмотренного теста пар частот с эффективным использованием выборки.

 

 

Рис. 4.11

 

В данном алгоритме в блоке 2 генрируется число Х1, а затем в блоках 3 - 5 определяется индекс I. В блоке 6 происходит наращивание тактов моделирования. В блоке 7 датчиком случайных чисел генерируется число Х. В блоках 8 – 10 определяется индекс J (тем самым образована пара 12)). В блоке 11 в счетчиках K[I,J] осуществляется подсчет частот попадания случайных пар в деления квадратной таблицы. В блоке 12 индексу I присваивается значение индекса J. При N=2 будет образована пара 23) и т.д.

 

– Конец работы –

Эта тема принадлежит разделу:

АНАЛИТИЧЕСКИЕ И ИМИТАЦИОННЫЕ МОДЕЛИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ... Технологический институт... Федерального государственного образовательного учреждения высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Проверочные тесты

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СТОХАСТИЧЕСКИЕ МОДЕЛИ
ОБЪЕКТОВ………………………………………..……. 46 3.1. Математические модели случайных процессов..… 46 3.2. Классификация моделей случайных процессов..… 53 3.3. Модели мар

МОДЕЛИ СИСТЕМ
МАССОВОГО ОБСЛУЖИВАНИЯ……..…………... 147 7.1. Общие сведения…..………………………………..... 147 7.2. Модель входного потока заявок и времени обслуживания…..…………………….……

УНИФИЦИРОВАННЫЙ
ЯЗЫК МОДЕЛИРОВАНИЯ UML…………..………. 229 9.1. Основные компоненты…………..…………………. 229 9.2. Понятия и компоненты…………..…………………. 231 9.3. Диаграммы вариантов испо

Понятие модели
  1.1.1. Системный подход к моделированию. При проектировании автоматизированных систем управления, разработке прикладных программных продуктов важно правильно постав

Концепции определения моделей
Под динамической системой понимается объект, находящийся в каждый момент времени tÎT в одном из возможных состояний

Инерционные модели
Динамические системы с последействием (с предысторией) могут быть формализованы с применением дифференциальных уравнений с запаздывающим аргументом. 2.3.1. Дифференциальные уравнен

Модели на основе передаточных функций
Рассмотрим однооткликовую импульсную систему с дискретными сигналами на ее входе и выходе, модель которой может быть выражена с помощью импульсной характеристики (весовой функции) в виде уравнения

Конечные автоматы
Для моделирования динамических систем, функционирующих в дискретном времени, применяется аппарат конечных автоматов [7]. Теория конечных автоматов и их модели используются при синтезе и анализе выч

СТОХАСТИЧЕСКИЕ МОДЕЛИ ОБЪЕКТОВ
  3.1. Математические модели случайных процессов При проведении научных исследований в производстве и в быту часто встречаются события, которые многократно появляются при одн

Понятие статистического моделирования
При определении методов статистического моделирования применяют название «метод Монте-Карло». Определение, которое характеризует этот метод достаточно точно и полно, не существует. Известно, что эт

Датчики случайных чисел
Для имитации случайных событий необходим некоторый эталон, т.е. то, с чем можно что-то сравнить. Известно, что наука существует там, где есть измерения. Отсутствие измерений приводит к схоластике,

Имитация случайных событий
  Пусть события S1, S2,..., Smобразуют полную группу несовместимых событий, каждое из которых может произойти с вероятностью Рi, причем

Имитация непрерывных случайных величин
Если событие Х принимает значения в некоторой области непрерывных величин, то для аналитического моделирования непрерывных событий применяют функцию распределения вероятностей

Имитация марковского процесса
4.6.1. Моделирование дискретной цепи Маркова. Рассмотрим дискретную цепь Маркова или марковский процесс с дискретным временем перехода из одного состояния в другое. Математическая

Выбор числа опытов
При разработке имитационных моделей для исследования случайных объектов существует задача выбора числа опытов (объема выборки). Это непростая задача, т.к. во-первых, необходимо обосновать достоверн

Формулы и алгоритмы для оценки результатов моделирования
  При реализации моделирующего алгоритма на ЭВМ вырабатывается информация о состоянии моделируемых систем, которая представляет собой исходный материал для определения приближенных ис

Аналитическое определение вероятностных автоматов
6.1.1. Формальное задание и классификация. Вероятностные автоматы (ВА) относятся к дискретно-стохастическому классу моделей. Данный тип моделей служит инструментом изучения динамич

Имитационное моделирование вероятностных автоматов
  Для имитации процесса функционирования ВА необходимо задать: - такты моделирования T, а также цикл по тактам моделирования от нуля до заданного числа такто

Модель входного потока заявок и времени обслуживания
Входной поток заявок характеризуется начальным моментом времени t0, моментами времени ti поступления i-х заявок, случайными

Модель Эрланга
При моделировании СМО исследуется изменение в системе за сколь угодно малый отрезок времени. Составляются уравнения в частных приращениях, от которых затем осуществляется переход к дифференциальным

Исследование модели пуассоновского процесса с помощью производящих функций
Будем считать, что на вход СМО поступает пуассоновский поток заявок с интенсивностью l и вероятностью Рn(t) того, что за время t в СМО

Имитационное моделирование одноканальной СМО
Алгоритмизация может осуществляться с применением способа Dt-моделирования, который позволяет определить состояния СМО через интервал времени Dt.

Имитационные модели многофазных СМО
Пусть СМО имеет структуру, показанную на рис. 7.18, т.е. обслуживание состоит из двух фаз. Входной поток заявок задан функцией распределения вероятностей длин интервалов между заявками A(t)

Имитационные модели многоканальных СМО
  7.8.1. Модели систем с общей очередью.Рассмотрим задачу построения имитационной модели трехканальной СМО с общей очередью. Понятие общей очереди предусматривает, чт

Алгоритмизация имитационной модели СМО произвольной структуры
  Методика построения имитационной модели СМО сложной структуры сводится к разработке модульной структуры алгоритмической модели. Структуру СМО необходимо декомпозировать на отдельные

Моделиpующие алгоpитмы
  Для моделиpования любого объекта, заданного пpи помощи математичеcкой модели, а также в виде последовательности процедур, имитирующих отдельные элементарные процессы, необxодимо поc

Основные компоненты
  После многх попыток создания унифицированных языков для решения задач моделирования был разработан и опробован объектно-ориентированный подход. Первый язык Simula-67, основанный на

Понятия и компоненты
  Сущности представляются парами «тип, экземпляр». Таких пар несколько: «класс, объект», «ассоциация, связь», «параметр, значение», «операция, вызов процедуры». Для изображения элемен

Array, Real, Vektor, Matrix.
Описание типа зависит от того, какой язык программирования используется разработчиками. Атрибуг изображается в виде текстовой строки, отражающей различные его свойства: <признак

Масса машины
… У каждой секции прямоугольника класса может быть имя. Так как секция «имя класса» обязательна, то ее имя не указывается, как показано на рис. 9.6.  

Связи между объектами
  Аналогично ключевому понятию модели классов - понятию ассоциации, - для объектов существует понятие связи (link). Связь есть экземпляр ассоциации, установленной для объектов данных

Диаграммы взаимодействия
Взаимодействия между объектами в системе представляются диаграммами взаимодействия (interaction diagrams). Диаграммы взаимодействия подразделяются на два основных типа диаграмм: диаграммы последова

Диаграммы состояний
  Диаграммы состояний (state diagram) определяют состояния, в которых может находиться конкретный объект, а также процесс смены состояний объекта в результате влияния некоторых событи

Диаграммы деятельностей
Диаграммы деятельностей (aktivity diagrams) предназначены для того, чтобы отразить переходы в рамках выполнения определенной задачи, вызванные внутренними процессами. Используются для моделирования

Определение объекта
  Объектно-ориентированный подход в последнее время стал прочно ассоциироваться с программированием. Объектно-ориентированный подход развивался почти исключительно программистами. Ито

Behavior
domain; }/*GGenerator*/     Рис. 10.3

Наследование
  Наследование в ООМ понимается примерно так же, как и в ООП. Если объявляете класс с2 прямым потомком класса с1, то класс с2 наслед

Полиморфизм
  Полиморфизмом в ООП называется возможность использования вместо объектов одного декларированного класса объекты другого класса, называемого замещающим, совместимого с первым. Аналог

Equation
Z= X/K; endCMulGiv; Новый класс CMulGiv наследует от своего суперкласса CGain вход, выход, параметр и одно уравнение, а также добавляет один выхо

Equation
Y = if X>Xmax then UpperLimit else if X<Xmin then LowerLimit else K*X;

Equation
connect(Gem.Y,Amp.X); connect(Gem.Y,Y); endCSineSource; Далее нужно создать специальный класс CLimitedSineSource на основе СSineSource, переопределив пар

Типы данных и пакеты
  Для моделирования непрерывных систем необходим минимальный набор типов данных: скалярный вещественный тип, типы «вектор» и «матрица», а также целые числа для вычисления индексов век

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Советов Б.Я., Яковлев С.А. «Моделирование систем». – М.: Высш. школа, 1985 – 271 с. 2. Бусленко Н.П. Моделирование сложных систем. – М.: Наука,1978. – 400 с. 3. Финаев В.И. Мод

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги