рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

При пе­ревозке в грузовом вагоне

При пе­ревозке в грузовом вагоне - раздел Образование, ПРОЕКТИРОВАНИЕ ПРИВОДОВ Обычно Расчёт Сварных Соединений Выполняется На Стадии Проектиро­вания Машины...

Обычно расчёт сварных соединений выполняется на стадии проектиро­вания машины, когда известен общий вид конструкции, примерное располо­жение и длина швов, по справочным данным назначена марка электрода, оп­ределены допускаемые напряжения и толщина (катет) шва [1, 9, 29]. В результате оце­нивается прочность назначенных сварных швов, т.е. расчёт, в сущности, яв­ляется проверочным.

Электроды, покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей (по ГОСТ 9467-75) изготавливают следующих типов (табл. 11.1).

Таблица 11.1 Типы электродов и их применение
Тип Свариваемые конструкции Положение шва
Э38 Э42 Ответственные из низкоуглеродистых и некоторых низколегированных сталей (например, 09Г2) с сопротивлением разрыву до 500 МПа нижнее наклонное
Э46 Э50 Ответственные металлоконструкции и детали машин из низкоуглеродистых сталей, работающих при статических и динамических знакопеременных нагрузках любое
Особо ответственные металлоконструкции из низколегированных, низкоуглеродистых сталей, работающих при динамических нагрузках; сосудов под давлением; заварки дефектов отливок  
Э42А Ответственные металлоконструкции из низкоуглеродистых, среднеуглеродистых и низколегированных сталей; заварки дефектов отливок с сопротивлением разрыву до 500 МПа, при повышенных требованиях к пластичности и ударной вязкости любое
Ответственные металлоконструкции и детали машин из низкоуглеродистых сталей, работающих при статических и динамических нагрузках  
Э46А Ответственные металлоконструкции из низколегированных сталей, работающих при статических и динамических нагрузках любое
Ответственные металлоконструкции из низкоуглеродистых сталей с сопротивлением разрыву до 500 МПа, при повышенных требованиях к пластичности и ударной вязкости
Э50А Ответственные металлоконструкции из низкоуглеродистых, среднеуглеродистых и низколегированных сталей; заварки дефектов отливок, ремонтной и монтажной сварки с сопротивлением разрыву до 500 МПа, при повышенных требованиях к пластичности и ударной вязкости Любое
Ответственные металлоконструкции из низкоуглеродистых сталей, заварки дефектов отливок, ремонтной и монтажной сварки  
Продолжение таблицы 11.1
Тип Свариваемые конструкции Положение шва
Э55 Э60 Ответственные металлоконструкции из среднеуглеродистых и низколегированных хромистых, хромомолибденовых и хромоникелемарганцовистых сталей, работающих в условиях тяжёлых динамических нагрузок с сопротивлением разрыву 500…600 МПа любое
Э70 Высоконагруженные ответственные металлоконструкции из конструкционных и низколегированных сталей повышенной прочности, работающих при динамических нагрузках с временным сопротивлением разрыву свыше 600 МПа нижнее
Э85 Ответственные металлоконструкции из низколегированных сталей повышенной прочности любое
Ответственные конструкции из сталей 40Х и 30ХГСА, подвергающихся термической обработке до высокого предела прочности с временным сопротивлением разрыву свыше 600 МПа
Э100; Э125; Э150 Ответственные конструкции из среднелегированных высокопрочных сталей нижнее
Э-09М, Э09МХ, Э09Х1М, Э-05Х2М, Э-09Х2М1, Э-09Х1МФ, Э-10Х1М1НФБ, Э-10Х3М1БФ, Э-10Х5МФ Для сварки легированных и теплоустойчивых сталей любое
         

В любом случае для расчёта самых сложных сварных швов сначала не­обходимо привести силу и момент к шву и распределить их пропорцио­нально несущей способности (длине) всех простых участков. Таким образом, любой сложный шов сводится к комбинации простейших расчётных схем: лобовых, фланговых, косых, тавровых и угловых.

Рассмотрим методику прочностного расчёта сварных швов на примере конструкции уголкового кронштейна (рис. 11.1) для растяжек крепления нестандартного груза при пе­ревозке в грузовом вагоне. Особенностью применения сварных соединений на железнодорожном транспорте является низкая возможность автоматизации технологического процесса и, соответственно, преимущественное применение ручных режимов сварки.

Из конструктивных соображений нижнее ребро уголка подкошено (α=75°) и таким образом имеется три участка сварного шва: лобовой (рис. 11.2), флан­говый (рис. 11.3) и косой (рис. 11.4). Уголки приварены к силовому ребру с двух сторон. Кон­сольный вынос кронштейна L = 100 мм. Рассчитаем конструкцию на случай действия нагрузки Q =10200 кГ (100 КН).

Рис. 11.1. Кронштейн для крепления растяжек

Здесь, как и в любой другой задаче, в первую очередь распределяем и приводим нагрузку к каждому из участков сварного шва.

 

Нагрузка распределяется по участкам шва пропорционально их длинам:

Qi = QLi/(L1+L2+L3), однако такое уравнение с тремя неизвестными требует задать, по крайней мере предварительно, длины участков шва.

Примем L1 = 100 мм, L3= L1/sin α = 100/sin75° = 103,5 мм. Назначим по ГОСТ 8509-93 для кронштейна уголок № 10 (ребро 100 мм), т.е. длина фланго­вого шва L2 = 100 мм.

Тогда мы можем распределить нагрузку Q по участкам шва:

(1) лобовой Q1 = QL1/(L1+L2+L3) = 100∙100/(100+100+103,5) = 32,95 КН;

(2) фланговый Q2 = QL2/(L1+L2+L3) = 100∙100/303,5 = 32,95 КН;

(3) косой Q3 = QL2/(L1+L2+L3) = 100∙103,5/303,5 = 34,10 КН.

Перенесём каждую из составляющих силы к середине соответствую­щего участка, при этом добавятся и соответствующие моменты:

M1 = Q1 (L+L1/2) = 32,95(100 + 100/2) = 4942,5 КНмм;

M2 = Q2 (L + L1) = 32,95(100 + 100 + 8/2) = 6721,8 КНмм;

M3 = Q3 (L+L1/2) = 34,10(100 +100/2) = 5115,0 КНмм.

Таким образом, наша задача разделяется на три подзадачи.

Рис. 11.2. Лобовой шов и его нагрузки Лобовой шов: L1=100мм, Q1 =32,95 КН, M1 =4942,5 КНмм. Здесь сила Q1 вызывает нормальные напряже­ния, а момент M1 – ка­сательные напряжения.
Рис. 11.3. Фланговый шов и его нагрузки Фланговый шов: L2 = 100 мм, Q2 = 32,95 КН; M2 = 6721,8 КНмм. Здесь и сила Q2 и момент M2 вызывают касательные напряжения.  
Рис. 11.4. Косой шов и его нагрузки Косой шов: L3= 103,5 мм; Q3 = 34,10 КН; M3 = 5115,0 КНмм. Здесь силу Q3 разложим на составляю­щие касательную и нормальную ко шву: Q3t = Q3 ∙ cosα = 34,1∙ cos75° = 8,825 КН; Q3n = Q3 ∙ sinα = 34,1∙ sin75° = 32,94 КН. Эти проекции вызывают, соответственно, касательные и нормальные напряжения. Момент в плоскости шва вызывает касательные напряжения.    

 

 

Далее для расчётов напряжений в участках шва необходимо задаться размерами его сечения. Длины участков известны, а катет шва обусловлен применяемым сварочным электродом (табл. 11.1).

Назначаем электрод Э42, катет шва не должен превышать наименьшей толщины свариваемых деталей, в нашем случае для уголка №10 k = 8 мм.

Площадь расчётного сечения шва равна Ai = β·k·Li·n, где n – число участков, в нашем случае n = 2, т.к. приварено два уголка, β – коэффициент глубины проплавления материала:

β = 0,7 для ручной сварки и автоматической за много проходов;

β = 0,8 для полуавтоматической сварки в два и три прохода;

β = 0,9 для автоматической сварки в два и три прохода;

β = 1,1 для автоматической сварки в один проход.

Предполагая ручную сварку, принимаем β = 0,7.

Рассчитываем напряжения в участках сварного шва.

Лобовой шов (рис. 11.2):

нормальные напряжения σ1Q = Q1/(β·k·L1·n) = 32,95/(0,7·10·100·2) = 23,54 МПа;

касательные напряжения τ = M1/(β·k·L1 2·n) = 4942,5/(0,7·10·1002·2) = 35,3 МПа.

Фланговый шов (рис. 11.3): касательные напряжения от силы τ2Q =
= Q2/(β·k·L2·n) =32,95/(0,7·10·100·2) = 23,54 МПа; касательные напряжения от момента τ = M2/(β·k·L2 2·n) = 6721,8/(0,7·10·1002·2) = 48,01 МПа; суммарные касательные напряжения τ2= τ2Q + τ =23,54 + 48,01= 71,55 МПа.

Косой шов (рис. 11.4): нормальные напряжения от нормальной проекции силы σ3Qn = Q3n/(β·k·L3·n) = 32,94/(0,7·10·103,52·2) = 21,96 МПа; касательные напряжения от касательной проекции силы τ3Qt = Q3t/(β·k·L3·n) =
= 8,825/(0,7·10·103,5·2) = 12,18 МПа; касательные напряжения от момента τ = M3/(β·k·L3 2·n) = 5115,0/(0,7·10·103,52·2) = 34,11 МПа.

Назначаем допускаемые напряжения сварного шва. Это является существенным моментом в расчёте сварных соединений. При статической нагрузке они задаются в долях от допускаемых напряжений основного металла соединяемых деталей на растяжение в зависимости от нагрузок, испытываемых швом:
[σ]шв = [σ]р при сжатии шва; [σ]шв = 0,9[σ]р при растяжении или сдвиге шва; [τ]шв = 0,6[σ]р при кручении шва.

Таблица 11.2 Допускаемые напряжения, МПа для углеродистых горячекатанных сталей
Марка стали Ст2 Ст3 Ст4 Ст5 Ст6
Нагрузка Статическая
Пульсирующая
Знакопеременная

 

Допускаемые напряжения металла деталей [σр] могут рассчитываться по пределу текучести.

Таблица 11.3 Пределы текучести конструкционных сталей, МПа, (без специальной термообработки)
Сталь 08 10 15 20 25 30 35 40 45 50 20Г 30Г 40Г 50Г
σТ
Сталь 65Г 10Г2 09Г2С 10ХСНД 20Х 40Х 45Х 50Х 35Г2 40Г2 45Г2 33ХС 38ХС 18ХГТ
σТ
Сталь 30ХГТ 20ХГНР 40ХФА 30ХМ 35ХМ 4-ХН 12ХН2 12ХН3А 20Х2Н4А 20ХГСА 30ХГС 30ХГСА 38Х210 50ХФА
σТ
Сталь 60С2 60С2А 20Л 25Л 30Л 35Л 45Л 50Л 20ГЛ 35ГЛ 30ГСЛ 40ХЛ 35ХГСЛ 35ХМЛ
σТ

В зависимости от условий работы и возможной перегрузки конструкции

р] = σТ· KМ · KP / (KЭ · Kσ),

где коэффициент материала KМ = 0,85 для низколегированных сталей, KМ = 0,9 для малоуглеродистых сталей; коэффициент условий работы KP = 0,8 для транспорта, KP = 0,9 для стационарных конструкций; коэффициент перегрузки KЭ для обычных режимов эксплуатации KЭ =1,1; для резервуаров с внутренним давлением KЭ =1,2; для строительно-дорожных машин при тяжёлом режиме работы KЭ =1,3…1,5; эффективный коэффициент концентрации напряжений Kσ зависит от конструкции и технологии шва

Таблица 11.4 Коэффициент концентрации напряжений Kσ
Элементы: Малоуглеродистая сталь Низколегированная сталь
У перехода к стыковому шву с мех. обработкой 1,2 1,4
То же без механической обработки 1,5 1,9
У перехода к лобовому шву с мех. обработкой и отношением катетов 1:1,5 2,5
То же без механической обработки 2,7 3,3
У флангового шва 3,5 4,5
У рёбер жёсткости и диафрагм, приваренных лобовыми швами с плавными переходами 1,5 1,9
У косынок, приваренных встык и втавр 2,7 3,3
То же при плавных формах косынок и механической обработке швов 1,5 1,9
У косынок, приваренных внахлёстку 2,7 3,3
Сварные швы:    
стыковые с полным проваром 1,2 1,4
угловые и лобовые 2,5
фланговые 3,5 4,5
Примечание. Kσ = 1 можно принимать для шва и основного металла при автоматической сварке или ручной с рентгенодефектоскопией.

Допускаемые напряжения при переменных нагрузках можно уточнить умножением статических допускаемых напряжений на коэффициент

где r = σminmax, a,b – коэффициенты: для углеродистой стали a = 0,9; b = 0,3; для дорожно-строительных машин при тяжёлых условиях работы принимают
a = 0,6; b = 0,2.

В нашем случае применяется уголок горячекатанный, равнопрочный №10, 100×10 ГОСТ 8509-93 из стали Ст3. Нагрузку предполагаем пульсирующей, поскольку растяжки не будут передавать на крепёжные уголки толкающих усилий. Следовательно, по таблице допускаемых напряжений [σp] выбираем 90 Мпа. Поскольку швы не испытывают кручения, а только растяжение или сдвиг, допускаемые напряжения рассчитываем, как [σшв] = 0,9[σр] = 0,9 · 90 =
= 81 Мпа. Это больше, чем напряжения в любом участке шва (в лобовом: 35,30 Мпа; во фланговом: 71,55 Мпа; в косом: 34,11 Мпа).

При заданных нагрузках и конструктивных параметрах крепёжных кронштейнов условие прочности сварных швов выполняется.

11.2. Расчёт резьбовых крепёжных соединений,

– Конец работы –

Эта тема принадлежит разделу:

ПРОЕКТИРОВАНИЕ ПРИВОДОВ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА... ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО... САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: При пе­ревозке в грузовом вагоне

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Транспортной техники
Условия работы приводов механизмов и машин транспортной техники имеют некоторую эксплуатационную специфику, продиктованную эксплуатацией в сравнительно тяжёлых условиях: − слабая пре

Транспортных приводов
Приводы в зависимости от величины и направления передаваемой мощности можно условно разделить на группы: − тяговые; − распределительные; − агрегатные;

Методика выбора оптимальных параметров привода
Современными источниками движения для подавляющего большинства машин и механизмов являются электрические и тепловые двигатели. Они надолго заняли эту технологическую нишу в силу своего неоспоримого

Транспортной техники
Главной особенностью расчётов при проектировании зубчатых колёс является учёт знакопеременных и динамических нагрузок, циклической усталости, корректный выбор допускаемых напряжений, коэффициентов

Материалы и общие принципы расчёта зубчатых передач
Зубчатые передачи являются наиболее распространенными механическими передачами и механизмами самых различных машин, приборов и приспособлений. Важнейшей задачей проектирования является выбор матери

Тяговый привод тепловоза ТЭП60
Рис. 3.5. Силовой привод ТЭП60 Рассмотрим методику расчё

Привод шлагбаума ША-8N
Цилиндрические открытые зубчатые передачи рассчитываются аналогично закрытым. Методика расчёта соответствует ГОСТ 21354-87 "Передачи зубчатые цилиндрические эвольвентные внешнего зацепления

Расчёт планетарной передачи. Привод шуруповёрта ШВ-2М
Планетарные передачи применяются в качестве распределительных механизмов, позволяя регулировать потоки мощности путём торможения различных звеньев и как дифференциальный механизм. Эти передачи комп

Расчёт волнового редуктора. Привод шлагбаума ША-8N
Волновые передачи применяются тогда, когда необходимо существенно понизить частоту вращения высокооборотного электродвигателя при малых габаритах привода [45]. Это достигается за счёт применения ги

Привод системы охлаждения генератора тепловоза 2ТЭ10Л
Конические зубчатые передачи выходят из строя по тем же причинам, что и цилиндрические. Поэтому и рассчитываются они аналогично, лишь с использование параметров эквивалентных цилиндрических передач

Электробалластера ЭЛБ-1
Червячные передачи, благодаря своему высокому передаточному отношению и возможности самоторможения, применяются в грузоподъёмных механизмах строительных, путевых и дорожно-строительных машин.

Передвижения пакетов пути моторной платформы МПД
Вследствие нагрева, вызванного трением, червячные передачи нуждаются также и в тепловом расчёте. Практика показывает, что отказ механизма неизбежен при температуре, выше предельной 95 °С. Допускаем

Расчёт фрикционных передач
Фрикционными называют передачи, в которых силовое взаимодействие жёстких звеньев осуществляется за счёт сил трения (рис. 4.1). Их применяют для передачи движения между валами с параллельными и пересек

Электрогенераторов РД2Д и ТРКП
Ременные передачи относятся к быстроходным передачам и поэтому в приводах они чаще всего применяются в первой ступени, когда нужно понизить частоту вращения перед входом в редуктор. Чаще всего это

Расчёт зубчатоременных передач
Зубчатые ремни (ОСТ 3805114-76) выполняются бесконечными плоскими на наружной поверхности с выступами на внутренней поверхности, входящими в зацепление с зубьями на шкивах. Передают мощности до 200

Натяжные устройства ременных передач
В процессе работы любых ременных передач необходимо обеспечить постоянное заданное натяжение ремня. Для этого применяют три типа натяжных устройств: постоянного, периодического и автоматического де

Привод побудителя распределителя щебня и гравия Д-337
Цепная передача (рис. 4.15) состоит из звёздочек и цепи, охватывающей звёздочки и зацепляющейся за их зубья [1, 8, 9]. Цепью можно приводить несколько ведомых звёздочек. Такие передачи устанавливаю

Проверяем цепь по допускаемой частоте вращения
n1max = 14 Z11/4 ·103/p = 14 · 20 1/4 · 103 / 25,4

Расчёт валов. Ведущий вал мультипликатора ТРКП
Расчёт валов проводится с целью определения геометрических параметров (диаметров), способных выдерживать требуемые нагрузки, а также для проверки прочности спроектированного вала при действии знако

Расчёт и выбор подшипников скольжения
Подшипники скольжения, помимо своих специфических областей применения (разъёмные опоры, особо тяжелые валы, большие вибрации и удары, малые габариты, особо точного поворота, высоких частот вращения

Осевые подшипники привода EUK
Подшипники качения рассчитываются тогда, когда рассчитаны силы во всех зацеплениях, известны все моменты, действующие на валах, намечены места размещения опор валов и определены реакции опор. Эти р

Шпалоподбивочной машины ШПМ-2
Упругие втулочно-пальцевые муфты (МУВП) получили широкое распространение благодаря простоте конструкции и удобству замены упругих элементов. Это особенно удобно при замене разрушенных резино

Домкрат ДВ10
Винты с ходовыми резьбами, называемые также передачами винт-гайка или винтовыми механизмами, применяются для преобразования вращательного движения в поступательное или передачи сил, как силовые вин

Системы смазывания деталей приводов
  В механизмах необходимо смазывать те сопряжения, в которых контактируют движущиеся детали. В первую очередь − зубчатые зацепления, особенно червячные, и подшипники. С

Стяжных и анкерных болтов
Наиболее распространённым видом крепёжных деталей в транспортных машинах являются болты метрические с шестигранной головкой (табл 11.5,6). Болты (винты) изготавливают разных классов прочно

Расчёт соединения с натягом. Посадка колеса на ось колёсной пары локомотива
  Соединения деталей с натягом широко распространены в транспортном машиностроении. Образуются за счёт натяга, т.е. отрицательной разницы диаметров охватывающей детали (отверстия) и о

Определяем минимальный расчётный натяг
Δmin = pkmind2(С1/Е1 + С2

Расчёт шпоночных соединений
Поскольку призматическая и сегментная шпонки передают вращающий момент между валом и колесом, воспринимая его через контактные усилия на своих боковых поверхностях, то основной проектировочный расч

Кранов УКД-12,5 и ПКД-25
Шлицы надёжнее шпонок, особенно при переменных нагрузках, точнее центрируют детали, облегчают продольные перемещения деталей на валу. Как по внешнему виду, так и по динамическим условиям работы шли

Расчёт штифтовых соединений
Такие соединения образуются совместным сверлением соединяемых деталей и установкой в отверстие с натягом специальных цилиндрических или конических штифтов [1, 8, 9]. Цилиндрические штифты

Библиографический список
1. Анурьев В.И. Справочник конструктора-машиностроителя : В 3 т. – 9-е изд., перераб. и доп. ; под ред. И.Н. Жестковой. – М. : Машиностроение, 2006. – Т.1 – 928 с. ; Т.2 – 960 с. ; Т.3 – 928

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги