рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Где -объём параллелепипеда, построенного на векторах ,и .

Где -объём параллелепипеда, построенного на векторах ,и . - раздел Образование, Образец решения контрольных задач типового варианта. 1.1 – 30.Вычислить определитель Для Векторов ,...

Для векторов ,и , заданных своими координатами , , смешанное произведение вычисляется по формуле: .

Смешанное произведение применяют: 1) для вычисления объёмов тетраэдра и параллелепипеда, построенных на векторах ,и , как на рёбрах, по формуле: ; 2) в качестве условия компланарности векторов ,и : и - компланарны.

Тема 5. Прямые линии и плоскости.

Нормальным вектором прямой , называется всякий ненулевой вектор перпендикулярный данной прямой. Направляющим вектором прямой , называется всякий ненулевой вектор параллельный данной прямой.

Прямая на плоскости в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение прямой, где - нормальный вектор прямой;

2) - уравнение прямой, проходящей через точку перпендикулярно данному вектору ;

3) - уравнение прямой, проходящей через точку параллельно данному вектору (каноническое уравнение);

4) - уравнение прямой, проходящей через две данные точки , ;

5) -уравнения прямой с угловым коэффициентом , где - точка через которую прямая проходит; () – угол, который прямая составляет с осью ; - длина отрезка (со знаком ), отсекаемого прямой на оси (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).

6) -уравнение прямой в отрезках, где и - длины отрезков (со знаком ), отсекаемых прямой на координатных осях и (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).

Расстояние от точки до прямой , заданной общим уравнениемна плоскости, находится по формуле:

.

Угол , () между прямыми и , заданными общими уравнениями или уравнениями с угловым коэффициентом, находится по одной из следующих формул:

; .

, если или .

,если или

Координаты точки пересечения прямых и находятся как решение системы линейных уравнений: или .

Нормальным вектором плоскости , называется всякий ненулевой вектор перпендикулярный данной плоскости.

Плоскость в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение плоскости, где - нормальный вектор плоскости;

2) - уравнение плоскости, проходящей через точку перпендикулярно данному вектору ;

3) - уравнение плоскости, проходящей через три точки , и ;

4) -уравнение плоскости в отрезках, где ,и - дины отрезков (со знаком ), отсекаемых плоскостью на координатных осях ,и (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).

Расстояние от точки до плоскости , заданной общим уравнением, находится по формуле:

.

Угол , () между плоскостями и , заданными общими уравнениями, находится по формуле:

.

, если

, если .

Прямая в пространстве в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение прямой, как линии пересечения двух плоскостей, где и - нормальные векторы плоскостей и ;

2) - уравнение прямой, проходящей через точку параллельно данному вектору (каноническое уравнение);

3) - уравнение прямой, проходящей через две данные точки , ;

4) -уравнение прямой, проходящей через точку параллельно данному вектору , (параметрическое уравнение);

Угол , () между прямыми и в пространстве, заданными каноническими уравнениями находится по формуле:

.

, если .

, если .

Координаты точки пересечения прямой , заданной параметрическим уравнением и плоскости , заданной общим уравнением, находятся как решение системы линейных уравнений: .

Угол , () между прямой , заданной каноническим уравнением и плоскостью , заданной общим уравнением находится по формуле: .

, если .

, если .

Тема 6. Кривые второго порядка.

Алгебраической кривой второго порядка в системе координат называется кривая , общее уравнение которой имеет вид:

,

где числа - не равны нулю одновременно. Существует следующая классификация кривых второго порядка: 1) если , то общее уравнение определяет кривую эллиптического типа (окружность (при ), эллипс (при ), пустое множество, точку); 2) если , то - кривую гиперболического типа (гиперболу, пару пересекающихся прямых); 3) если , то - кривую параболического типа (параболу, пустое множество, прямую, пару параллельных прямых) . Окружность, эллипс, гипербола и парабола называются невырожденными кривыми второго порядка.

Общее уравнение, где , определяющее невырожденную кривую (окружность, эллипс, гиперболу, параболу), всегда (методом выделения полных квадратов) можно привести к уравнению одного из следующих видов:

1а) -уравнение окружности с центром в точке и радиусом (рис. 5).

1б)- уравнение эллипса с центром в точке и осями симметрии, параллельными координатным осям. Числа и - называются полуосями эллипса; прямоугольник со сторонами , параллельными осям симметрии и центром в точке - основным прямоугольником эллипса; точки пересечения основного прямоугольника с осями симметрии - вершинами эллипса.

Для построения эллипса в системе координат :1) отмечаем центр эллипса; 2) проводим через центр пунктирной линией оси симметрии эллипса; 3) строим пунктиром основной прямоугольник эллипса с центром и сторонами , параллельными осям симметрии; 4) изображаем сплошной линией эллипс, вписывая его в основной прямоугольник так, чтобы эллипс касался его сторон только в вершинах эллипса (рис.6) .

Аналогично строится и окружность, основной прямоугольник которой имеет стороны (рис. 5).

 

– Конец работы –

Эта тема принадлежит разделу:

Образец решения контрольных задач типового варианта. 1.1 – 30.Вычислить определитель

Образец решения контрольных задач типового варианта... Вычислить определитель... а непосредственным разложением по строке...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Где -объём параллелепипеда, построенного на векторах ,и .

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Решение.
1а)Записываем расширенную матрицу системы: . 2а)Выполняем прямой ход метода Гаусса.

Решение.
1а)Записываем расширенную матрицу системы: . 2а)Выполняем прямой ход метода Гаусса.

Решение.
1в)Записываем расширенную матрицу системы: . 2в)Выполняем прямой ход метода Гаусса.

Решение.
а)Длинырёбер и находим как длины

Решение.
Точками разрыва функции являются точки разрыва функций в промежутках

Решение.
1а)Вычисляем :. 2а)Вычисляем

Краткие теоретические сведения.
Тема 1. Определители. Квадратной матрицей порядканазывается квад

Если в точке функция имеет конечные односторонние пределы и , но они не равны друг другу, то называется точкой разрыва 1-ого рода.
3)В остальных случаях называется точкой разрыва 2-ого рода . Функция

Семестр 2.
1.1-30.Найти производную: а) ;

Решение.
1)Находим область определения функции: =). 2)

Решение.
1)Находим область определения функции . 2)Находим первые частные производные

Найти условные экстремумы функции приусловии .
Для нахождения методом Лагранжа локальных экстремумов дифференцируемой функции при условии

Решение.
1)Находим область определения функции . 2)Составляем функцию Лагранжа:

Решение.
Градиент находится по формуле а) Найти градиент функци

Краткие теоретические сведения.
Тема 1. Производные и дифференциалы функции одной переменной. Приращением функции

Основные правила дифференцирования элементарных функций.
1. Если и дифференцируемые функции,

Неявные функции.
Если уравнение , где - дифференцируемая функция по переменным

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги