рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Принцип Паули

Принцип Паули - раздел Физика, КВАНТОВАЯ В Случае Более Сложных, Чем Водород, Атомов, Имеющих Несколько Электронов, Мо...

В случае более сложных, чем водород, атомов, имеющих несколько электронов, можно считать, что каждый электрон движется в усредненном поле ядра и остальных электронов. Это поле уже не является пропорциональным 1/r2 (как кулоновское), но оно обладает центральной симметрией. То есть, введя определенные поправки, можно решить задачу на собственные функции и собственные значения для любого для атома аналогично задаче об атоме водорода.

Состояние электрона в этом случае определяется четырьмя квантовыми числами:

главным n (n = 1, 2, 3, ...)

орбитальным l (l = 0, 1, 2, ..., n – 1)

магнитным ml (ml = –l, ..., –1, 0, 1, ..., +l)

спиновым ms (ms = –1/2, +1/2).

Энергия каждого состояния в основном определяется параметрами n и l, и лишь незначительно ml и ms. Чем больше n и l, тем больше энергия. В невозбужденном состоянии атома электроны в нем должны располагаться на самых низких из доступных им энергетических уровнях, а таковым является 1s состояние. То есть, ожидается, что все электроны в атомах должны располагаться именно на нем. Однако опыт показывает, что это не так. Реальная ситуация отражена в одном из основных законов квантовой механики, называемом принципом Паули (принципом запрета или исключения). Он справедлив для частиц, обладающих полуцелым спином, и для атомов гласит следующее: в одном и том же атоме не может быть двух электронов, обладающих одинаковой совокупностью четырех квантовых чисел n, l, ml, ms. Или в общем случае: в любой квантовой системе не возможно обнаружить две частицы, обладающих полуцелым спином и находящихся в одном и том же состоянии.

Совокупность электронов с данным n образует оболочку. Оболочки принято обозначать прописными латинскими буквами K, L, M, N, O, P и т.д.

Каждая оболочка в свою очередь подразделяется на подоболочки, отличающиеся значением параметра l (s, p, d, f,...). Можно показать, что при данном n существует 2n2 состояний, отличающихся друг от друга остальными тремя квантовыми числами (орбитальным l, магнитным ml и спиновым ms). Следовательно в атоме в состояниях с данным значением n могут находиться не более 2n2 электронов, то есть в состоянии с:

n = 1 могут находиться 2 электрона, они составляют K-оболочку,

n = 2 могут находиться 8 электронов, составляющих L-оболочку,

n = 3 могут находиться 18 электронов, составляющих M-оболочку,

n = 4 могут находиться 32 электрона, составляющих N-оболочку, и т.д.

Заполнение оболочек в атомах в соответствии с принципом Паули начинается с первой (K-оболочки): атомы с единственной непустой оболочкой – это водород и гелий (см. табл.). По мере увеличения числа электронов в атоме заполненными оказываются и следующие оболочки. Повторение химических свойств элемента совпадает со степенью заполнения внешней оболочки. Так атомы, у которых внешняя оболочка содержит один электрон, обладают свойствами щелочных металлов (кроме водорода). Напротив, атомы с полностью заполненной внешней оболочкой являются инертными газами. Вплоть до калия (№19) заполнение оболочек происходит по порядку.

Для калия же наблюдается аномальное заполнение – прежде чем заполнится полностью M-оболочка, начинается заполнение следующей N-оболочки. Это связано с тем, что энергия подоболочки 3d оказывается выше подоболочки 4s. Природный принцип стремления любой системы к минимуму энергии приводит к тому, что электроны сначала заполняют боле низкое энергетическое состояние, т.е. 4s. После заполнения подоболочки 4s будет заполняться 3d, и только после нее подоболочка 4p, так как ее энергия будет еще больше.

Таким образом, каждый атом состоит из определенного числа электронов. Энергетические состояния атома могут быть рассчитаны с помощью уравнений, аналогичных уравнению Шредингера.


 

 

Заполнение оболочек атомов электронами

Элемент (№ и название) K L M N
1s 2s 2p 3s 3p 3d 4s 4p 4d
1 H - - - - - - - -
2 He - - - - - - - -
3 Li - - - - - - -
4 Be - - - - - - -
5 B - - - - - -
6 C - - - - - -
7 N - - - - - -
8 O - - - - - -
9 F - - - - - -
10 Ne - - - - - -
11 Na - - - - -
12 Mg - - - - -
13 Al - - - -
14 Si - - - -
15 P - - - -
16 S - - - -
17 Cl - - - -
18 Ar - - - -
19 K - - -
20 Ca - - -
21 Sc - -
22 Ti - -
23 V - -
24 Cr - -
25 Mn - -
26 Fe - -
27 Co - -
28 Ni - -
29 Cu - -
30 Zn - -
31 Ga -
32 Ge -
33 As -
34 Se -
35 Br -
36 Kr -

Результирующий момент многоэлектронного атома будет складываться из орбитальных M и собственных MS моментов всех электронов. Существуют специальные правила, по которым рассчитывают результирующий момент атома. Назовем атомным остатком атом, лишенный внешних валентных электронов. Можно показать, что момент атомного остатка равен нулю. Тогда полный момент атома будет складываться из моментов валентных электронов.

Существует два типа атомов, для которых полный момент находится по одному из приведенных ниже правил:

1) в атомах более распространенного типа взаимодействие между орбитальными моментами Ml электронов в атоме сильнее, чем взаимодействие между орбитальным Ml и спиновым Ms моментами каждого электрона, в этом случае сначала находят отдельно результирующие орбитальный и спиновый моменты всех электронов в атоме, затем полученные моменты складываются в полный момент атома.

2) в тяжелых атомах усиливается взаимодействие между орбитальным и спиновым моментами для каждого электрона в атоме, в этом случае сначала находят полный момент отдельного электрона, полный момент атома складывается из полных моментов электронов, входящих в состав атома

Величина полного механического момента атома MJ равна:

(8.1)

определяется квантовым числом J, которое может быть равно:

(8.2)

где S, а следовательно и спин атома, может быть как целым, так и полуцелым, в зависимости от того, четное или нечетное число валентных электронов в атоме:

– при четном числе электронов S принимает значение от 0 (если спины попарно компенсируют друг друга) до N/2 (если все спины параллельны друг другу),

– при нечетном числе электронов минимальное S может быть равно 1/2 (когда все кроме одного спины компенсируют друг друга), максимальное S = N/2 (когда все спины параллельны);

число L складывается из квантовых чисел l и может принимать целое значение от 0 (когда l всех электронов равно нулю) до N∙(n – 1), где n – главное квантовое число валентного уровня, N – число валентных электронов.

Состояние атома полностью описывается тремя квантовыми числами L, S, J. Для обозначения определенных состояний атома используют схематическую запись:, куда входят указанные квантовые числа.

Вместо численных значений квантового числа L принято использовать прописные буквенные обозначения: S, P, D, E, F и далее по алфавиту (см. обозначения для атома водорода). В случае, когда S < L, (2S+1) задает мультиплетность энергетического уровня. Если S > L, мультиплетность равна (2L+1), однако в верхнем индексе все равно указывается S, чтобы не утерять информацию о спиновом состоянии атома.

Так же, как для атома водорода, момент импульса многоэлектронного атома может иметь строго определенные направления в пространстве, поэтому проекция момента импульса на заданное направление квантуется по правилу: (8.3)

где квантовое число mJ может принимать значения mJ = 0, ±1, ±2, ..., ±J, и при переходах атома между состояниями подчиняется правилу отбора:

(8.4)

Полному механическому моменту атома соответствует полный магнитный момент: (8.5)

Его направление которого определяется по величине проекции на выделенное направление: (8.6)

где gL, называемый множителем Ланде, вычисляется по формуле:

(8.7)

– Конец работы –

Эта тема принадлежит разделу:

КВАНТОВАЯ

Воронежский государственный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Принцип Паули

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства теплового излучения
С античных времен известно, что вещества, нагретые до достаточно высокой температуры, приобретают способность светиться. Например, раскаленные жидкие и твердые тела испускают белый свет, обладающий

Функция Кирхгофа. Абсолютно черное тело
Поток энергии, испускаемый единицей поверхности излучающего тела по всем направлениям (в пределах телесного угла 2π), называют энергетической светимостью тела R, которая является

Закон смещения Вина
К 1884 г. Стефан, основываясь на экспериментальных данных, и Больцман из теоретических соображений получили, что энергетическая светимость RT абсолютно черного тела, связанная с и

Теория Планка
Для того, чтобы устранить ошибку, ученым пришлось кардинально изменить взгляд на природу излучения. Первым это сделал Макс Планк. После долгих расчетов, чтобы получить желаемый и напрашивающийся ре

Фотоэффект
Наряду с законами теплового излучения в конце XIX в. было открыто оптическое явление, не укладывающееся в рамки законов классической физики. Это явление фотоэлектрического эффекта или просто фотоэф

Энергия, масса и импульс фотона. Давление света
Фотоэффект показывает, что электромагнитное излучение способно вести себя как частица – фотон. При поглощении, испускании или взаимодействии фотона с любыми частицами можно использовать те же закон

Эффект Комптона
Наличие у света корпускулярных свойств также подтверждается комптоновским рассеянием фотонов. Эффект назван в честь открывшего в 1923 г. это явление американского физика Артура Холли Комптона. Он и

Теория атома Бора
Со времен Древней Греции вплоть до конца XIX в. считалось, что все тела состоят из мельчайших частиц – атомов, которые являются неделимыми частицами материи, «кирпичиками мироздания». Всякое проявл

Волновые свойства вещества. Гипотеза де Бройля
Размышляя над свойствами света и микрочастиц, французский физик Луи де Бройль пришел к выводу, что «Корпускулярно-волновой дуализм Эйнштейна носит всеобщий характер и распространяется на все физиче

Принцип неопределенности Гейзенберга
И свет, и микрочастицы в любой момент одновременно являются и частицей и волной. Только в некоторых случаях одно из свойств выражено меньше. Например, для электромагнитной волны частотой меньше 10

Волновая функция
Итак, микрочастицы не подчиняются законам классической механики, их поведение нельзя описать принятыми в классической физике способами. Этот факт заставил ученых создать новую теорию. Новая механик

Уравнение Шредингера
Итак, состояние системы описывается волновой функцией Ψ, которая определяется конфигурацией системы и конкретным видом силового поля, в котором она находится. Найти волновую функцию час

Уравнение Шредингера для свободной частицы
Рассмотрим свободно движущуюся частицу. И если волновой функцией фотона является плоская световая волна, для частиц волновая функция является плоской волной де Бройля, (см. раздел 4). Для

Уравнение Шредингера для частицы в силовом поле
Если частица находится в каком-либо силовом поле, характеризуемом потенциальной энергией U, то: (5.8)

Стационарное уравнение Шредингера
Если силовое поле, в котором движется частица, стационарно (т.е. постоянно во времени), то функция U не зависит явно от t. В этом случае решение уравнения Шредингера распадается на дв

Уравнение Шредингера для частицы в потенциальной яме
Нахождение электрона в поле ядра можно приближенно считать движением в трехмерной потенциальной яме. Высота этой ямы определяется величиной кулоновского поля ядра. Рассмотрим простейший сл

Туннельный эффект
Рассмотрим движение частицы при прохождении потенциального барьера. Пусть она движется слева направо и встречает на своем пути потенциальный барьер высотой U0 и шириной

Гармонический осциллятор. Фононы
Для описания классических и квантовых систем часто используют модель гармонического осциллятора. Линейным гармоническим осциллятором называют систему, совершающую одномерное колебательное дв

Главное квантовое число
Рассмотрим в качестве модельной простейшую систему, состоящую из неподвижного ядра с зарядом Z = 1 и одного электрона, т.е. атом водорода. Аналогичным образом будут описываться так называемы

Орбитальное и магнитное квантовые числа
Параметры l и m представляют собой азимутальное (или орбитальное) и магнитное квантовые числа. Поясним их появление. Рассмотрим стационарное уравнение Шредингера (в дека

Правила отбора. Спектры атомов
Знаем, что испускание и поглощение света происходит при переходах электрона с одного уровня на другой. При этом атом может поглотить или испустить только фотон с энергией, равной разности энергий с

Собственный момент электрона
Итак, атом обладает механическим моментом импульса, и его существование влияет на спектры атомов. Поскольку в состав атома входят заряженные частицы, то при рассмотрении их движения необходимо учит

Эффект Зеемана
Зная полный магнитный момент атома, можно определить влияние внешнего магнитного поля на его спектр. Происходящее под действием внешнего магнитного поля расщепление энергетических уровней атомов на

Виды молекул
Для понимания природы химической связи, обуславливающей образование молекул из атомов, а также кристаллов, необходимо рассмотреть квантовомеханическую модель атома с учетом волновых свойств электро

Спонтанное и вынужденное излучение
Существование любой микросистемы (атома, молекулы, потока частиц) – это многократное изменение полной энергии этой системы в результате ее взаимодействия с другими системами. Изменение полной энерг

Принцип работы и устройство лазеров
Вынужденное излучение было положено в основу усилителей электромагнитного излучения. Советские физики Н. Г. Басов и А. М. Прохоров, и независимо от них американец Ч. Таунсон, в 50-е годы XX века со

Статистика Бозе-Эйнштейна и Ферми-Дирака
Изучаемые в курсе классической молекулярной статистической физики частицы, можно было рассматривать как упругие шарики. При этом каждую из тождественных частиц можно было отличить от других – как б

Образование энергетических зон
Все кристаллические тела представляют собой упорядоченное скопление огромного количества атомов. Идеальная кристаллическая решетка состоит из многократно повторяющихся тождественных элементарных яч

Собственная проводимость
Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному элект

Примесная проводимость
Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим

Квантовая теория проводимости металлов
Рассмотрим процесс проводимости с квантовой точки зрения. В предыдущей лекции было сказано, что при объединении атомов в кристаллическую решетку происходит снижение высоты стенок потенциального бар

Сверхпроводимость
В области низких температур наблюдается явление сверхпроводимости – резкого падения сопротивления материала. Впервые это явление было обнаружено в 1911 г. Камерлингом-Оннесом для ртути при температ

Состав и характеристики атомных ядер
Ядро любого атома, кроме атома легкого водорода, состоит из частиц – нуклонов двух типов: Z протонов и N нейтронов. Нейтрон был открыт в 1932 г. Джеймсом Чэдвиком, тогда же Кар

Ядерные силы
Упомянутые ядерные силы характеризуют одно из фундаментальных взаимодействий, которое получило название сильного взаимодействия. Существует 4 вида фундаментальных взаимодействий – по порядку

Образование ядер. Дефект масс
Рассмотрим процесс образования ядра. Природа образования любого ядра такова, что масса стабильного ядра всегда меньше суммы масс составляющих это ядро нуклонов. Например, ядро дейтерия, на

Закон радиоактивного превращения
Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. В процессе такого превращения у ядра могут измениться ка

Альфа-распад
Альфа-распадом называется процесс самопроизвольного испускания ядром α-частиц, которые по своей природе являются ядрами атомов гелия

Бета-распад
Бета-распад – процесс самопроизвольного превращения нестабильного ядра в ядро-изобар (ядро с тем же атомным номером) с зарядом, отличным от исходного на ΔZ = ± 1, за счет испускания эле

Спонтанное деление тяжелых ядер. Гамма-излучение
Процесс спонтанного деления тяжелых ядер был обнаружен в 1940 г. советскими физиками Г.Н. Флеровым и К.А. Петржаковым. Ими было установлено, что без какого-либо внешнего воздействия ядра урана само

Вынужденные ядерные процессы
Ядерной реакцией называют процесс сильного взаимодействия атомного ядра с элементарной частицей, приводящий к преобразованию ядра (или нескольких ядер). Реакция возникает при сближении реаги

Реакция деления ядра
В 1938 г. немецкие ученые О. Ган и Ф. Штрассман обнаружили, что при облучении урана тепловыми нейтронами образуются элементы из середины периодической системы – барий и лантан (тепловыми называются

Реакция синтеза атомных ядер
Ядерный синтез, т. е. слияние легких ядер в одно ядро, сопровождается, как и деление тяжелых ядер, выделением огромного количества энергии. Поскольку для синтеза ядер необходимы очень высоки

ЗАКЛЮЧЕНИЕ
В настоящем пособии были рассмотрены основные вопросы квантовой физики - квантовая природа электромагнитного излучения, физика атомов, молекул, кристаллических тел и ядер, представлены элементы ква

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  1. Савельев И.В. Курс общей физики / И.В. Савельев. М.: Наука, 1989. Т. 1 – 3. 2. Типлер П. А.Современная физика: пер. с англ.: в 2-х т. / П. А. Типлер, Р. А. Ллуэллин: Т.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги