рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Волновые свойства вещества. Гипотеза де Бройля

Волновые свойства вещества. Гипотеза де Бройля - раздел Физика, КВАНТОВАЯ Размышляя Над Свойствами Света И Микрочастиц, Французский Физик Луи Де Бройль...

Размышляя над свойствами света и микрочастиц, французский физик Луи де Бройль пришел к выводу, что «Корпускулярно-волновой дуализм Эйнштейна носит всеобщий характер и распространяется на все физические объекты». В 1924 г. де Бройль опубликовал парадоксальную гипотезу, которая в конечном итоге позволила построить логичную теорию, объясняющую явления, происходящие на субатомном уровне:

Если электромагнитное излучение с длиной волны λ = 2πc/ω должно проявлять свойства частицы-фотона с энергией E = ħω = 2πс/λ и импульсом p = E/c = 2πħ/λ, то и материальные частицы с энергией E и импульсом p должны обладать свойствами волны с частотой:

(4.1)

и длиной волны (4.2)

Такая волна называется волной де Бройля. Волна, которая сопоставляется частице, может иметь устойчивое состояние в замкнутом пространстве (т.е. в пределах атома) только в одном случае – если вдоль орбиты частицы укладывается целое число длин волн, то есть, если, двигаясь вдоль орбиты, волна де Бройля совершает целое число полных колебаний. Картина аналогична той, которую мы наблюдаем при появлении стоячей волны в натянутой струне: (4.3)

где rn – радиус n-ой орбиты, n = 1, 2, 3, ...

Уже в 1927 г. гипотеза де Бройля была подтверждена экспериментально в лаборатории Bell Telephone в ходе опытов К. Дэвиссона и его ассистента Л. Джермера. Узкий пучок электронов с кинетической энергией E ∼ 100 эВ (по этой энергии можно посчитать импульс электрона) падал нормально на монокристалл никеля и рассеивался на атомах поверхностного слоя под разными углами θ (рис. 4.1). Длина волны де Бройля таких электронов, рассчитанная по формуле (4.2), была сравнима с межатомным расстоянием d ∼ 10–10 м.

Рис. 4.1. Схема опыта Дэвисона и Джермера

Детектор (гальванометр) улавливал отраженные электроны и измерил четкие максимумы и минимумы тока под углами θn. Углы, под которыми наблюдались максимумы тока, удовлетворяли условию интерференционного максимума: n = 1, 2, 3, ... (4.4)

То есть, наблюдалось явление интерференции микроскопических частиц – электронов. Расчеты показали, что выраженная из формулы (4.4) длина интерферирующих волн и длина волны, полученная по формуле (4.2), совпадают с высокой точностью.

Несколько нагляднее этот эффект можно было бы продемонстрировать, если направлять электроны на преграду, имеющую два отверстия диаметром d ∼ 10–10 м.

В этом случае мы будем наблюдать несколько максимумов (сильное почернение на фотопластинке), как при интерференции света на двух щелях (пластинка №3). Если одно из отверстий закрыть, получим результат как на пластинках 1 или 2 – в зависимости от того, какая щель остается открытой. Видно, что картина от двух открытых щелей не является суммой картин 1 и 2. То есть каждый электрон, преодолевая преграду со щелями, «чувствует» оба отверстия, он «знает», открыты ли оба отверстия или одно из них закрыто. Это не значит, что он как волна разделяется на две составляющие. Электрон неделим! Но природа его такова, что ведет он себя как волна, следовательно бессмысленно говорить, что электрон прошел через одно из двух отверстий.

Рис. 4.2. Дифракция электронов на щели

В том же 1927 г. Дж. Томсон и независимо от него П.Тартаковский наблюдали дифракцию электронов при прохождении через тонкую металлическую фольгу (рис. 4.3). Дифракционной решеткой в этом случае служила кристаллическая решетка металла. Электроны, проходя через нее, согласно предположению де Бройля действительно могли дать дифракционную картинку. Такая картинка регистрировалась на фотопластинке (электрон, ударяясь о фотослой на пластинке, вызывает такой же эффект, как фотон – оставляет засвеченное пятно). Оставался открытым вопрос: действительно ли дифракция наблюдается для электронов или электроны, ударяясь о фольгу, вызывают вторичные рентгеновские волны, которые и дают дифракционную картинку?

Рис. 4.3. Схема опыта по дифракции электронов

Для ответа на этот вопрос в схему эксперимента были введены два магнита, которые должны отклонять двигающиеся электроны и в тоже время никак не должны влиять на рентгеновские лучи (ведь это фотоны, электрический заряд которых равен нулю). Поскольку наблюдалось отклонение дифракционных колец от первоначального положения, был сделан вывод, что наблюдаемое явление – дифракция электронов.

Как показали более поздние опыты, дифракция возможна не только для пучка электронов, но и для каждого электрона в отдельности. Советские физики Л. Биберман, Н. Сушкин и В. Фабрикант в 1949 г. провели эксперимент, в котором источник электронов имел настолько малую интенсивность, что электроны из него вылетали буквально по одному. Опыт занял довольно большое время, но результат оказался точно такой же, как при интенсивном источнике электронов: на фотопластинке наблюдались четкие дифракционные кольца.

Таким образом, электроны обладают волновыми свойствами. Как показали многочисленные опыты, то же самое можно сказать обо всех микрочастицах. Была получена дифракция атомов и молекул, электронов и нейтронов, и других микрочастиц. В частности, дифракция нейтронов широко используется для исследования кристаллической структуры материалов. Дифракция электронов на белковых молекулах является стандартным методом исследования белков.

Гипотеза де Бройля была подтверждена безоговорочно. Более того, она стала основой для создания «новой квантовой физики». Существенно расширенная, эта теория по сей день принимается верной для процессов, протекающих на микроуровне. А Луи де Бройлю в 1929 г. была присуждена Нобелевская премия по физике.

Фундамент, на котором строилась вся квантовая теория, можно сформулировать следующим образом:

Фотоны и любые микротела не имеют принципиального различия. И тем и другим сопоставляются как волновые, так и корпускулярные свойства. И те, и другие подчиняются единым принципам.

– Конец работы –

Эта тема принадлежит разделу:

КВАНТОВАЯ

Воронежский государственный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Волновые свойства вещества. Гипотеза де Бройля

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства теплового излучения
С античных времен известно, что вещества, нагретые до достаточно высокой температуры, приобретают способность светиться. Например, раскаленные жидкие и твердые тела испускают белый свет, обладающий

Функция Кирхгофа. Абсолютно черное тело
Поток энергии, испускаемый единицей поверхности излучающего тела по всем направлениям (в пределах телесного угла 2π), называют энергетической светимостью тела R, которая является

Закон смещения Вина
К 1884 г. Стефан, основываясь на экспериментальных данных, и Больцман из теоретических соображений получили, что энергетическая светимость RT абсолютно черного тела, связанная с и

Теория Планка
Для того, чтобы устранить ошибку, ученым пришлось кардинально изменить взгляд на природу излучения. Первым это сделал Макс Планк. После долгих расчетов, чтобы получить желаемый и напрашивающийся ре

Фотоэффект
Наряду с законами теплового излучения в конце XIX в. было открыто оптическое явление, не укладывающееся в рамки законов классической физики. Это явление фотоэлектрического эффекта или просто фотоэф

Энергия, масса и импульс фотона. Давление света
Фотоэффект показывает, что электромагнитное излучение способно вести себя как частица – фотон. При поглощении, испускании или взаимодействии фотона с любыми частицами можно использовать те же закон

Эффект Комптона
Наличие у света корпускулярных свойств также подтверждается комптоновским рассеянием фотонов. Эффект назван в честь открывшего в 1923 г. это явление американского физика Артура Холли Комптона. Он и

Теория атома Бора
Со времен Древней Греции вплоть до конца XIX в. считалось, что все тела состоят из мельчайших частиц – атомов, которые являются неделимыми частицами материи, «кирпичиками мироздания». Всякое проявл

Принцип неопределенности Гейзенберга
И свет, и микрочастицы в любой момент одновременно являются и частицей и волной. Только в некоторых случаях одно из свойств выражено меньше. Например, для электромагнитной волны частотой меньше 10

Волновая функция
Итак, микрочастицы не подчиняются законам классической механики, их поведение нельзя описать принятыми в классической физике способами. Этот факт заставил ученых создать новую теорию. Новая механик

Уравнение Шредингера
Итак, состояние системы описывается волновой функцией Ψ, которая определяется конфигурацией системы и конкретным видом силового поля, в котором она находится. Найти волновую функцию час

Уравнение Шредингера для свободной частицы
Рассмотрим свободно движущуюся частицу. И если волновой функцией фотона является плоская световая волна, для частиц волновая функция является плоской волной де Бройля, (см. раздел 4). Для

Уравнение Шредингера для частицы в силовом поле
Если частица находится в каком-либо силовом поле, характеризуемом потенциальной энергией U, то: (5.8)

Стационарное уравнение Шредингера
Если силовое поле, в котором движется частица, стационарно (т.е. постоянно во времени), то функция U не зависит явно от t. В этом случае решение уравнения Шредингера распадается на дв

Уравнение Шредингера для частицы в потенциальной яме
Нахождение электрона в поле ядра можно приближенно считать движением в трехмерной потенциальной яме. Высота этой ямы определяется величиной кулоновского поля ядра. Рассмотрим простейший сл

Туннельный эффект
Рассмотрим движение частицы при прохождении потенциального барьера. Пусть она движется слева направо и встречает на своем пути потенциальный барьер высотой U0 и шириной

Гармонический осциллятор. Фононы
Для описания классических и квантовых систем часто используют модель гармонического осциллятора. Линейным гармоническим осциллятором называют систему, совершающую одномерное колебательное дв

Главное квантовое число
Рассмотрим в качестве модельной простейшую систему, состоящую из неподвижного ядра с зарядом Z = 1 и одного электрона, т.е. атом водорода. Аналогичным образом будут описываться так называемы

Орбитальное и магнитное квантовые числа
Параметры l и m представляют собой азимутальное (или орбитальное) и магнитное квантовые числа. Поясним их появление. Рассмотрим стационарное уравнение Шредингера (в дека

Правила отбора. Спектры атомов
Знаем, что испускание и поглощение света происходит при переходах электрона с одного уровня на другой. При этом атом может поглотить или испустить только фотон с энергией, равной разности энергий с

Собственный момент электрона
Итак, атом обладает механическим моментом импульса, и его существование влияет на спектры атомов. Поскольку в состав атома входят заряженные частицы, то при рассмотрении их движения необходимо учит

Принцип Паули
В случае более сложных, чем водород, атомов, имеющих несколько электронов, можно считать, что каждый электрон движется в усредненном поле ядра и остальных электронов. Это поле уже не является пропо

Эффект Зеемана
Зная полный магнитный момент атома, можно определить влияние внешнего магнитного поля на его спектр. Происходящее под действием внешнего магнитного поля расщепление энергетических уровней атомов на

Виды молекул
Для понимания природы химической связи, обуславливающей образование молекул из атомов, а также кристаллов, необходимо рассмотреть квантовомеханическую модель атома с учетом волновых свойств электро

Спонтанное и вынужденное излучение
Существование любой микросистемы (атома, молекулы, потока частиц) – это многократное изменение полной энергии этой системы в результате ее взаимодействия с другими системами. Изменение полной энерг

Принцип работы и устройство лазеров
Вынужденное излучение было положено в основу усилителей электромагнитного излучения. Советские физики Н. Г. Басов и А. М. Прохоров, и независимо от них американец Ч. Таунсон, в 50-е годы XX века со

Статистика Бозе-Эйнштейна и Ферми-Дирака
Изучаемые в курсе классической молекулярной статистической физики частицы, можно было рассматривать как упругие шарики. При этом каждую из тождественных частиц можно было отличить от других – как б

Образование энергетических зон
Все кристаллические тела представляют собой упорядоченное скопление огромного количества атомов. Идеальная кристаллическая решетка состоит из многократно повторяющихся тождественных элементарных яч

Собственная проводимость
Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному элект

Примесная проводимость
Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим

Квантовая теория проводимости металлов
Рассмотрим процесс проводимости с квантовой точки зрения. В предыдущей лекции было сказано, что при объединении атомов в кристаллическую решетку происходит снижение высоты стенок потенциального бар

Сверхпроводимость
В области низких температур наблюдается явление сверхпроводимости – резкого падения сопротивления материала. Впервые это явление было обнаружено в 1911 г. Камерлингом-Оннесом для ртути при температ

Состав и характеристики атомных ядер
Ядро любого атома, кроме атома легкого водорода, состоит из частиц – нуклонов двух типов: Z протонов и N нейтронов. Нейтрон был открыт в 1932 г. Джеймсом Чэдвиком, тогда же Кар

Ядерные силы
Упомянутые ядерные силы характеризуют одно из фундаментальных взаимодействий, которое получило название сильного взаимодействия. Существует 4 вида фундаментальных взаимодействий – по порядку

Образование ядер. Дефект масс
Рассмотрим процесс образования ядра. Природа образования любого ядра такова, что масса стабильного ядра всегда меньше суммы масс составляющих это ядро нуклонов. Например, ядро дейтерия, на

Закон радиоактивного превращения
Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. В процессе такого превращения у ядра могут измениться ка

Альфа-распад
Альфа-распадом называется процесс самопроизвольного испускания ядром α-частиц, которые по своей природе являются ядрами атомов гелия

Бета-распад
Бета-распад – процесс самопроизвольного превращения нестабильного ядра в ядро-изобар (ядро с тем же атомным номером) с зарядом, отличным от исходного на ΔZ = ± 1, за счет испускания эле

Спонтанное деление тяжелых ядер. Гамма-излучение
Процесс спонтанного деления тяжелых ядер был обнаружен в 1940 г. советскими физиками Г.Н. Флеровым и К.А. Петржаковым. Ими было установлено, что без какого-либо внешнего воздействия ядра урана само

Вынужденные ядерные процессы
Ядерной реакцией называют процесс сильного взаимодействия атомного ядра с элементарной частицей, приводящий к преобразованию ядра (или нескольких ядер). Реакция возникает при сближении реаги

Реакция деления ядра
В 1938 г. немецкие ученые О. Ган и Ф. Штрассман обнаружили, что при облучении урана тепловыми нейтронами образуются элементы из середины периодической системы – барий и лантан (тепловыми называются

Реакция синтеза атомных ядер
Ядерный синтез, т. е. слияние легких ядер в одно ядро, сопровождается, как и деление тяжелых ядер, выделением огромного количества энергии. Поскольку для синтеза ядер необходимы очень высоки

ЗАКЛЮЧЕНИЕ
В настоящем пособии были рассмотрены основные вопросы квантовой физики - квантовая природа электромагнитного излучения, физика атомов, молекул, кристаллических тел и ядер, представлены элементы ква

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  1. Савельев И.В. Курс общей физики / И.В. Савельев. М.: Наука, 1989. Т. 1 – 3. 2. Типлер П. А.Современная физика: пер. с англ.: в 2-х т. / П. А. Типлер, Р. А. Ллуэллин: Т.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги