рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Квантовая теория проводимости металлов

Квантовая теория проводимости металлов - раздел Физика, КВАНТОВАЯ Рассмотрим Процесс Проводимости С Квантовой Точки Зрения. В Предыдущей Лекции...

Рассмотрим процесс проводимости с квантовой точки зрения. В предыдущей лекции было сказано, что при объединении атомов в кристаллическую решетку происходит снижение высоты стенок потенциального барьера вокруг ядра каждого атома. При этом внешние (валентные электроны) получают возможность при определенных условиях перемещаться по всему кристаллу, электроны же внутренних оболочек остаются на своих местах. Для металлической решетки условием освобождения электронов является воздействие на кристалл энергии порядка 10–22 эВ, т.е. энергии теплового движения при любой температуре достаточно, чтобы электрон оторвался от ядра и стал свободным. Таким образом, в отличие от полупроводников, металлы всегда имеют электроны проводимости. Поэтому при рассмотрении процесса проводимости изучают не факторы, влияющие на образование свободных электронов, а наоборот – факторы, мешающие проводимости. Напомним, что в направленном движении зарядов в металлах могут участвовать только электроны (понятие дырка здесь не возникает).

Отличие механизмов проводимости в металлах и полупроводниках, объясняет обратную (по отношению к случаю полупроводников) зависимость электропроводности от температуры (рис. 12.8). В металлах наблюдается уменьшение проводимости с ростом температуры. Это связано с одним из факторов, определяющих проводимость металла – усилением тепловых колебаний кристаллической решетки, что сопровождается увеличением числа столкновений свободных электронов с положительными ионами решетки – увеличением сопротивления.

 

Рис. 12.8. Зависимость удельного сопротивления металлов от температуры

При понижении температуры число столкновений электронов с атомами решетки снижается и при 0 K обращается в нуль. Сопротивление металла также зависит от того, насколько идеальной является кристаллическая решетка. Реальные кристаллы имеют довольно много разнообразных дефектов. Искажение строго периодичной структуры может быть обусловлено заменой атомов решетки инородными атомами, появлением атомов в междоузлиях, наконец, отсутствием каких-либо атомов решетки (вакансии). Любой из этих дефектов может оказывать влияние на движение электрона в кристалле, причем при небольшой концентрации дефектов от температуры это влияние не зависит. При температуре 0 K, когда колебания решетки отсутствуют, остаточное сопротивление металлов, не переходящих в сверхпроводящее состояние (рис. 12.8 кривая 1), будет обусловлено дефектностью кристаллической решетки.

Если в единице объема металла имеется n свободных электронов. Дрейфовой скоростью электронов называют среднюю скорость перемещения электрона в пределах кристалла: (12.8)

В отсутствие внешнего поля дрейфовая скорость равна нулю и электрический ток в металле отсутствует. При наложении на металл внешнего электрического поля напряженностью дрейфовая скорость уже не будет равна нулю, согласно закону Ома (см. раздел «электромагнетизм» тему «постоянный ток») дрейфовая скорость электронов конечна и пропорциональна силе , действующей на электрон, заряд которого равен . Согласно закону Ньютона, силе должно быть пропорционально ускорение, а не скорость. Единственным случаем в механике, когда сила оказывается пропорциональной скорости, является ситуация, когда помимо внешней силы на тело действует еще и сила сопротивления среды. В металле также можно рассмотреть силу сопротивления движению электрона:

(12.9)

где – коэффициент пропорциональности, в данной ситуации , m* – эффективная масса электрона (см. раздел 11), τ – представляет собой время релаксации, которое характеризует процесс восстановления равновесия между электронами и кристаллической решеткой, которое было нарушено действием внешнего поля .

Тогда уравнение, описывающее поведение электронов в металле будет иметь вид: (12.10)

Решив это уравнение, можно найти дрейфовую скорость электронов в металле, находящемся во внешнем электрическом поле:

(12.11)

Тогда плотность тока в металле равна:

(12.12)

где n – количество свободных электронов в данном объеме, другими словами – концентрация электронов в металле.

Сравнивая полученное выражение с законом Ома в дифференциальной форме: , получим, что: (12.13)

– Конец работы –

Эта тема принадлежит разделу:

КВАНТОВАЯ

Воронежский государственный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Квантовая теория проводимости металлов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства теплового излучения
С античных времен известно, что вещества, нагретые до достаточно высокой температуры, приобретают способность светиться. Например, раскаленные жидкие и твердые тела испускают белый свет, обладающий

Функция Кирхгофа. Абсолютно черное тело
Поток энергии, испускаемый единицей поверхности излучающего тела по всем направлениям (в пределах телесного угла 2π), называют энергетической светимостью тела R, которая является

Закон смещения Вина
К 1884 г. Стефан, основываясь на экспериментальных данных, и Больцман из теоретических соображений получили, что энергетическая светимость RT абсолютно черного тела, связанная с и

Теория Планка
Для того, чтобы устранить ошибку, ученым пришлось кардинально изменить взгляд на природу излучения. Первым это сделал Макс Планк. После долгих расчетов, чтобы получить желаемый и напрашивающийся ре

Фотоэффект
Наряду с законами теплового излучения в конце XIX в. было открыто оптическое явление, не укладывающееся в рамки законов классической физики. Это явление фотоэлектрического эффекта или просто фотоэф

Энергия, масса и импульс фотона. Давление света
Фотоэффект показывает, что электромагнитное излучение способно вести себя как частица – фотон. При поглощении, испускании или взаимодействии фотона с любыми частицами можно использовать те же закон

Эффект Комптона
Наличие у света корпускулярных свойств также подтверждается комптоновским рассеянием фотонов. Эффект назван в честь открывшего в 1923 г. это явление американского физика Артура Холли Комптона. Он и

Теория атома Бора
Со времен Древней Греции вплоть до конца XIX в. считалось, что все тела состоят из мельчайших частиц – атомов, которые являются неделимыми частицами материи, «кирпичиками мироздания». Всякое проявл

Волновые свойства вещества. Гипотеза де Бройля
Размышляя над свойствами света и микрочастиц, французский физик Луи де Бройль пришел к выводу, что «Корпускулярно-волновой дуализм Эйнштейна носит всеобщий характер и распространяется на все физиче

Принцип неопределенности Гейзенберга
И свет, и микрочастицы в любой момент одновременно являются и частицей и волной. Только в некоторых случаях одно из свойств выражено меньше. Например, для электромагнитной волны частотой меньше 10

Волновая функция
Итак, микрочастицы не подчиняются законам классической механики, их поведение нельзя описать принятыми в классической физике способами. Этот факт заставил ученых создать новую теорию. Новая механик

Уравнение Шредингера
Итак, состояние системы описывается волновой функцией Ψ, которая определяется конфигурацией системы и конкретным видом силового поля, в котором она находится. Найти волновую функцию час

Уравнение Шредингера для свободной частицы
Рассмотрим свободно движущуюся частицу. И если волновой функцией фотона является плоская световая волна, для частиц волновая функция является плоской волной де Бройля, (см. раздел 4). Для

Уравнение Шредингера для частицы в силовом поле
Если частица находится в каком-либо силовом поле, характеризуемом потенциальной энергией U, то: (5.8)

Стационарное уравнение Шредингера
Если силовое поле, в котором движется частица, стационарно (т.е. постоянно во времени), то функция U не зависит явно от t. В этом случае решение уравнения Шредингера распадается на дв

Уравнение Шредингера для частицы в потенциальной яме
Нахождение электрона в поле ядра можно приближенно считать движением в трехмерной потенциальной яме. Высота этой ямы определяется величиной кулоновского поля ядра. Рассмотрим простейший сл

Туннельный эффект
Рассмотрим движение частицы при прохождении потенциального барьера. Пусть она движется слева направо и встречает на своем пути потенциальный барьер высотой U0 и шириной

Гармонический осциллятор. Фононы
Для описания классических и квантовых систем часто используют модель гармонического осциллятора. Линейным гармоническим осциллятором называют систему, совершающую одномерное колебательное дв

Главное квантовое число
Рассмотрим в качестве модельной простейшую систему, состоящую из неподвижного ядра с зарядом Z = 1 и одного электрона, т.е. атом водорода. Аналогичным образом будут описываться так называемы

Орбитальное и магнитное квантовые числа
Параметры l и m представляют собой азимутальное (или орбитальное) и магнитное квантовые числа. Поясним их появление. Рассмотрим стационарное уравнение Шредингера (в дека

Правила отбора. Спектры атомов
Знаем, что испускание и поглощение света происходит при переходах электрона с одного уровня на другой. При этом атом может поглотить или испустить только фотон с энергией, равной разности энергий с

Собственный момент электрона
Итак, атом обладает механическим моментом импульса, и его существование влияет на спектры атомов. Поскольку в состав атома входят заряженные частицы, то при рассмотрении их движения необходимо учит

Принцип Паули
В случае более сложных, чем водород, атомов, имеющих несколько электронов, можно считать, что каждый электрон движется в усредненном поле ядра и остальных электронов. Это поле уже не является пропо

Эффект Зеемана
Зная полный магнитный момент атома, можно определить влияние внешнего магнитного поля на его спектр. Происходящее под действием внешнего магнитного поля расщепление энергетических уровней атомов на

Виды молекул
Для понимания природы химической связи, обуславливающей образование молекул из атомов, а также кристаллов, необходимо рассмотреть квантовомеханическую модель атома с учетом волновых свойств электро

Спонтанное и вынужденное излучение
Существование любой микросистемы (атома, молекулы, потока частиц) – это многократное изменение полной энергии этой системы в результате ее взаимодействия с другими системами. Изменение полной энерг

Принцип работы и устройство лазеров
Вынужденное излучение было положено в основу усилителей электромагнитного излучения. Советские физики Н. Г. Басов и А. М. Прохоров, и независимо от них американец Ч. Таунсон, в 50-е годы XX века со

Статистика Бозе-Эйнштейна и Ферми-Дирака
Изучаемые в курсе классической молекулярной статистической физики частицы, можно было рассматривать как упругие шарики. При этом каждую из тождественных частиц можно было отличить от других – как б

Образование энергетических зон
Все кристаллические тела представляют собой упорядоченное скопление огромного количества атомов. Идеальная кристаллическая решетка состоит из многократно повторяющихся тождественных элементарных яч

Собственная проводимость
Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному элект

Примесная проводимость
Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим

Сверхпроводимость
В области низких температур наблюдается явление сверхпроводимости – резкого падения сопротивления материала. Впервые это явление было обнаружено в 1911 г. Камерлингом-Оннесом для ртути при температ

Состав и характеристики атомных ядер
Ядро любого атома, кроме атома легкого водорода, состоит из частиц – нуклонов двух типов: Z протонов и N нейтронов. Нейтрон был открыт в 1932 г. Джеймсом Чэдвиком, тогда же Кар

Ядерные силы
Упомянутые ядерные силы характеризуют одно из фундаментальных взаимодействий, которое получило название сильного взаимодействия. Существует 4 вида фундаментальных взаимодействий – по порядку

Образование ядер. Дефект масс
Рассмотрим процесс образования ядра. Природа образования любого ядра такова, что масса стабильного ядра всегда меньше суммы масс составляющих это ядро нуклонов. Например, ядро дейтерия, на

Закон радиоактивного превращения
Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. В процессе такого превращения у ядра могут измениться ка

Альфа-распад
Альфа-распадом называется процесс самопроизвольного испускания ядром α-частиц, которые по своей природе являются ядрами атомов гелия

Бета-распад
Бета-распад – процесс самопроизвольного превращения нестабильного ядра в ядро-изобар (ядро с тем же атомным номером) с зарядом, отличным от исходного на ΔZ = ± 1, за счет испускания эле

Спонтанное деление тяжелых ядер. Гамма-излучение
Процесс спонтанного деления тяжелых ядер был обнаружен в 1940 г. советскими физиками Г.Н. Флеровым и К.А. Петржаковым. Ими было установлено, что без какого-либо внешнего воздействия ядра урана само

Вынужденные ядерные процессы
Ядерной реакцией называют процесс сильного взаимодействия атомного ядра с элементарной частицей, приводящий к преобразованию ядра (или нескольких ядер). Реакция возникает при сближении реаги

Реакция деления ядра
В 1938 г. немецкие ученые О. Ган и Ф. Штрассман обнаружили, что при облучении урана тепловыми нейтронами образуются элементы из середины периодической системы – барий и лантан (тепловыми называются

Реакция синтеза атомных ядер
Ядерный синтез, т. е. слияние легких ядер в одно ядро, сопровождается, как и деление тяжелых ядер, выделением огромного количества энергии. Поскольку для синтеза ядер необходимы очень высоки

ЗАКЛЮЧЕНИЕ
В настоящем пособии были рассмотрены основные вопросы квантовой физики - квантовая природа электромагнитного излучения, физика атомов, молекул, кристаллических тел и ядер, представлены элементы ква

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  1. Савельев И.В. Курс общей физики / И.В. Савельев. М.: Наука, 1989. Т. 1 – 3. 2. Типлер П. А.Современная физика: пер. с англ.: в 2-х т. / П. А. Типлер, Р. А. Ллуэллин: Т.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги