рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Взаимные корреляционные функции сигналов

Взаимные корреляционные функции сигналов - раздел Связь, Введение в теорию сигналов и систем Взаимная Корреляционная Функция (Вкф) Разных Сигн...

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

Bsu(t) =s(t) u(t+t) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|Bsu(t)| £ ||s(t)||×||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t-t в формуле (6.2.1), получаем:

Bsu(t) =s(t-t) u(t) dt =u(t) s(t-t) dt = Bus(-t).

Отсюда следует, что для ВКФ не выполняется условие четности, Bsu(t) ¹ Bsu(-t), и значения ВКФ не обязаны иметь максимум при t = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)). При t=0 сигналы ортогональны и значение B12(t)=0. Максимум В12(t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1') наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал t сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. Bsu(t) = Bus(-t).

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при t=0, что и фиксируется функцией Bsu. Вместе с тем функция Bsu резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака t при увеличения значения t от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция Bsv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция Bvs будет зеркально повернутой относительно t=0 функцией Bsv.

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

Bsu(t) =s(t) u(t+t) dt. Bus(t) =u(t) s(t+t) dt. (6.2.1')

Взаимная корреляция зашумленных сигналов. Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

Buv(t) = Bs1s2(t) + Bs1q2(t) + Bq1s2(t) + Bq1q2(t). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении t. При больших интервалах задания сигналов выражение может быть записано в следующей форме:

Buv(t) = Bs1s2(t) + + + . (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

Buv(t) → Bs1s2(t).

ВКФ дискретных сигналов.Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при Dt = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

Bxy(n) = xk yk-n. (6.2.4)

При нормировании в единицах мощности:

Bxy(n) = xk yk-n @ . (6.2.5)

Оценка периодических сигналов в шуме. Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

Bup(k) = Bsp(k) + Bqp(k) = Bsp(k) + .

А поскольку → 0 при увеличении N, то Bup(k) → Bsp(k). Очевидно, что функция Bup(k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции Bup(k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

rsu(t) = Csu(t)/sssv. (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах t может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах t, на которых наблюдаются нулевые значения rsu(t), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений |rsu(n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

– Конец работы –

Эта тема принадлежит разделу:

Введение в теорию сигналов и систем

Тематика практических работ введение в теорию сигналов.. Содержание.. Общие сведения и понятия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Взаимные корреляционные функции сигналов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тематика практических работ
Работы выполняются на компьютерах по типовым программам с заданием индивидуальных параметров моделирования, расчетов и обработки данных для каждого студента группы.

Пространство сигналов
Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу

Мощность и энергия сигналов
Понятия мощности и энергиив теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отража

Пространства функций
Пространства функций можно считать обобщением пространства N-мерных сигналов – векторов на аналоговые сигналы, как бесконечномерные векторы, с некоторыми чисто практическими уточнениями.

Функции корреляции сигналов
Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом. Автокорреляционные функции (АКФ) сигналов

Математическое описание шумов и помех
Шумы и помехи (noise). При детектировании сигналов в сумме с основным информационным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различ

Разложение сигналов по единичным импульсам
Единичные импульсы. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию. Дельта-функция

Свертка (конволюция) сигналов
Интеграл Дюамеляпозволяет определять реакцию системы на воздействие s(t) в текущем времени по ее переходной функции g(t) на единичный скачок входного воздействия:

Мощность и энергия сигналов
Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик. Как уже рассматривалось

Энергетические спектры сигналов
Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением: E =

Автокорреляционные функции сигналов
Понятие автокорреляционных функций сигналов. Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной инте

Спектральные плотности корреляционных функций
Спектральная плотность АКФ может быть определена из следующих простых соображений. В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного

Задачи дискретизации функций
Сигналы и системы дискретного времени. Значения дискретного сигнала определены только при дискретных значениях времени или любой другой независимой переменной. Обычно ег

Равномерная дискретизация
Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномер

Исследование и разработка основных правил ограничения интервала суммирования при интерполяции данных рядом Котельникова-Шеннона
Рис. 7.2.9. Интерполяция по Котельникову-Шеннону. Ряд (7.2.7) позволяет простым введе

Дискретизация по критерию наибольшего отклонения
Задача абсолютно точного восстановления сигнала на практике обычно не ставится, в отличие от задачи минимального физического объема информации, при котором сохраняется возможность ее восстановления

Адаптивная дискретизация
Частота равномерной дискретизации информации рассчитывается по предельным значениям частотных характеристик сигналов. Адаптивная дискретизация ориентирована на динамические характеристики сигнала,

Исследовать и разработать программу оценки спектра дискретного сигнала при неравномерном шаге дискретизации
Самыми простыми способами восстановления сигналов при адаптивной дискретизации являются линейная и квадратичная интерполяции, которые выполняются по уравнениям: f(x)лин = а

Квантование сигналов
Дискретизация аналоговых сигналов с преобразованием в цифровую форму связана с квантованием сигналов. Сущность квантования состоит в замене несчетного множества возможных значений функции, в общем

Децимация и интерполяция данных
Децимацией (прореживанием, сокращением) цифровых данных принято называть уплотнение данных с удалением избыточной информации. Последнее имеет место, если шаг дискретизации данных был установлен изл

Преобразование Фурье
Дискретное преобразование Фурьеможет быть получено непосредственно из интегрального преобразования дискретизаций аргументов (tk = kDt, fn = nDf):

Преобразование Лапласа
Дискретное преобразование Лапласа (ДПЛ), как и ДПФ, может быть получено из интегрального преобразования дискретизаций аргументов (tk = kDt, wn = nDw): Y(p) =

Z - преобразование сигналов
Определение преобразования. Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Произвольной непр

Дискретная свертка (конволюция)
Свертка – основной процесс в цифровой обработке сигналов. Поэтому важно уметь эффективно ее вычислять. Уравнение дискретной свертки двух функций (сигналов) може

Случайные процессы и функции
Случайный процесс описывается статистическими характеристиками, называемыми моментами. Важнейшими характеристиками случайного процесса являются его стационарность, эргодичность и спектр мощности.

Функции спектральной плотности
Каноническое разложение случайных функций. Введем понятие простейшей случайной функции, которая определяется выражением: X(t) = X×j(t), (9.2.1)

Преобразования случайных функций
Системы преобразования случайных функций.Пусть имеется система преобразования с одним входом, на который поступает (подается) входная случайная функция X(t) - функция

Модели случайных сигналов и помех
Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовый случайный процесс, гауссовый шум.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги