рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Задачи дискретизации функций

Задачи дискретизации функций - раздел Связь, Введение в теорию сигналов и систем Сигналы И Системы Дискретного Времени. Значения Д...

Сигналы и системы дискретного времени. Значения дискретного сигнала определены только при дискретных значениях времени или любой другой независимой переменной. Обычно его представляют в виде последовательности чисел: s(k) º s(kDt) º sk, k = 0, 1, 2, …, K, где значениями чисел отображают значения сигнала в дискретные моменты времени. Значения интервала дискретизации обычно принято опускать, т.е. принимать равным Dt = 1, поскольку он является не более чем масштабным множителем по независимой переменной и при постоянном значении во всех параметрах и атрибутах обработки сигналов, включая сопряженные величины (например, масштаб частоты f=1/|Dt|), его физическая величина может вводиться в результаты на заключительной стадии обработки данных. По существу, при Dt=1 осуществляется нормирование сигналов и систем их обработки по независимой переменной.

Система дискретного времени – это алгоритм с входной последовательностью s(k) и выходной последовательностью y(k), которая может быть линейной или нелинейной, инвариантной или изменяющейся во времени. Система дискретного времени линейна и инвариантна во времени (ЛИВ-система), если она подчиняется принципу суперпозиции (отклик на несколько входов равен сумме откликов на каждый вход в отдельности), а задержка (сдвиг) входного сигнала вызывает такую же задержку выходного сигнала. Вход и выход ЛИВ-систем связывает сверточная сумма:

y(k) =h(n) x(k-n),

где h(n) – дискретная импульсная характеристика (импульсный отклик) системы. Система устойчива, если выполняется условие:

|h(n)| < ∞.

Это условие справедливо всегда для систем с конечной импульсной характеристикой (КИХ-систем) без особых точек в своем составе, что характерно для нерекурсивных систем с ограниченным числом отсчетов (в общем случае, N1 < n < N2), а также для систем с бесконечной импульсной характеристикой (БИХ-систем), если h(n) → 0 при n → ∞, что должно выполняться для рекурсивных систем.

Физически реализуемой называется система, если ее импульсная характеристика существует только при n≥0.

Принципы дискретизации. Сущность дискретизации аналоговых сигналов заключается в том, что непрерывность во времени аналоговой функции s(t) заменяется последовательностью коротких импульсов, амплитудные значения которых cn определяются с помощью весовых функций, либо непосредственно выборками (отсчетами) мгновенных значений сигнала s(t) в моменты времени tn.Представление сигнала s(t) на интервале Т совокупностью дискретных значений cn записывается в виде:

1, с2, ... , cN) = А[s(t)],

где А - оператор дискретизации. Запись операции восстановления сигнала s(t):

s'(t) = В[(с1, с2, ... , cN)].

Выбор операторов А и В определяется требуемой точностью восстановления сигнала. Наиболее простыми являются линейные операторы. В общем случае:

сn =qn(t) s(t) dt, (7.1.1)

где qn(t) - система весовых функций.

Отсчеты в выражении (7.1.1) связаны с операцией интегрирования, что обеспечивает высокую помехоустойчивость дискретизации. Однако в силу сложности технической реализации "взвешенного" интегрирования, последнее используется достаточно редко, при высоких уровнях помех. Более широкое распространение получили методы, при которых сигнал s(t) заменяется совокупностью его мгновенных значений s(tn) в моменты времени tn. Роль весовых функций в этом случае выполняют гребневые (решетчатые) функции. Отрезок времени Dt между соседними отсчетами называют шагом дискретизации. Дискретизация называется равномерной с частотой F=1/Dt, если значение Dt постоянно по всему диапазону преобразования сигнала. При неравномерной дискретизации значение Dt между выборками может изменяться по определенной программе или в зависимости от изменения каких-либо параметров сигнала.

Воспроизведение непрерывного сигнала по выборкам может проводиться как на основе ортогональных, так и неортогональных базисных функций. Воспроизводящая функция s'(t) соответственно представляется аппроксимирующим полиномом:

s'(t) =cn vn(t), (7.1.2)

где vn(t) - система базисных функций. Ортогональные базисные функции обеспечивают сходимость ряда к s(t) при n Þ ¥. Оптимальными являются методы дискретизации, обеспечивающие минимальный числовой ряд при заданной погрешности воспроизведения сигнала. При неортогональных базисных функциях используются, в основном, степенные алгебраические полиномы вида:

s'(t) =cn tn. (7.1.3)

Если значения аппроксимирующего полинома совпадают со значениями выборок в моменты их отсчета, то такой полином называют интерполирующим. В качестве интерполирующих полиномов обычно используются многочлены Лагранжа. Для реализации интерполирующих полиномов необходима задержка сигнала на интервал дискретизации, что в системах реального времени требует определенных технических решений. В качестве экстраполирующих полиномов используют, как правило, многочлены Тейлора.

Естественным требованием к выбору частоты дискретизации является внесение минимальных искажений в динамику изменения сигнальных функций. Логично полагать, что искажения информации будут тем меньше, чем выше частота дискретизации F. С другой стороны также очевидно, что чем больше значение F, тем большим количеством цифровых данных будут отображаться сигналы, и тем большее время будет затрачиваться на их обработку. В оптимальном варианте значение частоты дискретизации сигнала F должно быть необходимым и достаточным для обработки информационного сигнала с заданной точностью, т.е. обеспечивающим допустимую погрешность восстановления аналоговой формы сигнала (среднеквадратическую в целом по интервалу сигнала, либо по максимальным отклонениям от истинной формы в характерных информационных точках сигналов).

– Конец работы –

Эта тема принадлежит разделу:

Введение в теорию сигналов и систем

Тематика практических работ введение в теорию сигналов.. Содержание.. Общие сведения и понятия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Задачи дискретизации функций

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тематика практических работ
Работы выполняются на компьютерах по типовым программам с заданием индивидуальных параметров моделирования, расчетов и обработки данных для каждого студента группы.

Пространство сигналов
Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу

Мощность и энергия сигналов
Понятия мощности и энергиив теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отража

Пространства функций
Пространства функций можно считать обобщением пространства N-мерных сигналов – векторов на аналоговые сигналы, как бесконечномерные векторы, с некоторыми чисто практическими уточнениями.

Функции корреляции сигналов
Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом. Автокорреляционные функции (АКФ) сигналов

Математическое описание шумов и помех
Шумы и помехи (noise). При детектировании сигналов в сумме с основным информационным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различ

Разложение сигналов по единичным импульсам
Единичные импульсы. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию. Дельта-функция

Свертка (конволюция) сигналов
Интеграл Дюамеляпозволяет определять реакцию системы на воздействие s(t) в текущем времени по ее переходной функции g(t) на единичный скачок входного воздействия:

Мощность и энергия сигналов
Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик. Как уже рассматривалось

Энергетические спектры сигналов
Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением: E =

Автокорреляционные функции сигналов
Понятие автокорреляционных функций сигналов. Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной инте

Взаимные корреляционные функции сигналов
Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположени

Спектральные плотности корреляционных функций
Спектральная плотность АКФ может быть определена из следующих простых соображений. В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного

Равномерная дискретизация
Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномер

Исследование и разработка основных правил ограничения интервала суммирования при интерполяции данных рядом Котельникова-Шеннона
Рис. 7.2.9. Интерполяция по Котельникову-Шеннону. Ряд (7.2.7) позволяет простым введе

Дискретизация по критерию наибольшего отклонения
Задача абсолютно точного восстановления сигнала на практике обычно не ставится, в отличие от задачи минимального физического объема информации, при котором сохраняется возможность ее восстановления

Адаптивная дискретизация
Частота равномерной дискретизации информации рассчитывается по предельным значениям частотных характеристик сигналов. Адаптивная дискретизация ориентирована на динамические характеристики сигнала,

Исследовать и разработать программу оценки спектра дискретного сигнала при неравномерном шаге дискретизации
Самыми простыми способами восстановления сигналов при адаптивной дискретизации являются линейная и квадратичная интерполяции, которые выполняются по уравнениям: f(x)лин = а

Квантование сигналов
Дискретизация аналоговых сигналов с преобразованием в цифровую форму связана с квантованием сигналов. Сущность квантования состоит в замене несчетного множества возможных значений функции, в общем

Децимация и интерполяция данных
Децимацией (прореживанием, сокращением) цифровых данных принято называть уплотнение данных с удалением избыточной информации. Последнее имеет место, если шаг дискретизации данных был установлен изл

Преобразование Фурье
Дискретное преобразование Фурьеможет быть получено непосредственно из интегрального преобразования дискретизаций аргументов (tk = kDt, fn = nDf):

Преобразование Лапласа
Дискретное преобразование Лапласа (ДПЛ), как и ДПФ, может быть получено из интегрального преобразования дискретизаций аргументов (tk = kDt, wn = nDw): Y(p) =

Z - преобразование сигналов
Определение преобразования. Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Произвольной непр

Дискретная свертка (конволюция)
Свертка – основной процесс в цифровой обработке сигналов. Поэтому важно уметь эффективно ее вычислять. Уравнение дискретной свертки двух функций (сигналов) може

Случайные процессы и функции
Случайный процесс описывается статистическими характеристиками, называемыми моментами. Важнейшими характеристиками случайного процесса являются его стационарность, эргодичность и спектр мощности.

Функции спектральной плотности
Каноническое разложение случайных функций. Введем понятие простейшей случайной функции, которая определяется выражением: X(t) = X×j(t), (9.2.1)

Преобразования случайных функций
Системы преобразования случайных функций.Пусть имеется система преобразования с одним входом, на который поступает (подается) входная случайная функция X(t) - функция

Модели случайных сигналов и помех
Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовый случайный процесс, гауссовый шум.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги