рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Одноканальная СМО с ожиданием

Одноканальная СМО с ожиданием - раздел Экономика, Конспект лекций Имитационное моделирование экономических процессов Система Массового Обслуживания Имеет Один Канал. Входящий Поток Заявок На Обс...

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­нем непрерывно занятый канал будет выдавать μ обслуженных за­явок). Длительность обслуживания — случайная величина, подчи­ненная показательному закону распределения. Поток обслужива­нии является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2

 


Рисунок 5.2 – Граф состояний одноканальной СМО с ожиданием (схема гибели и размножения)

 

Состояния СМО имеют следующую интерпретацию:

S0 — «канал свободен»;

S1 — «канал занят» (очереди нет);

S2 — «канал занят» (одна заявка стоит в очереди);

Sn — «канал занят» (п — 1 заявок стоит в очереди);

SN — «канал занят» (N — 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

 

(10)


п — номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид


(11)

 

 

(12)

 

Тогда

Следует отметить, что выполнение условия стационарности

для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N — 1), а не соотношением между интенсивностями входного потока, т. е. не отношением λ/μ=ρ

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N — 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

(15)

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

(17)

средняя продолжительность пребывания клиента (заявки) в очереди:

 

(18)

среднее число заявок (клиентов) в очереди (длина очереди):

(19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики представ­ляет собой одноканальную СМО. Число стоянок для автомоби­лей, ожидающих проведения диагностики, ограниченно и равно 3[(N — 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживаний автомобилей:

2. Приведенная интенсивность потока автомобилей определя­ется как отношение интенсивностей λ, и μ, т. е.

3. Вычислим финальные вероятности системы

4. Вероятность отказа в обслуживании автомобиля:

 

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

(автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев отк = 0,158).

Перейдем теперь к рассмотрению одноканальной СМО с ожида­нием без ограничения на вместимость блока ожидания (т. е. N →∞). Остальные условия функционирования СМО остаются без изме­нений.

Стационарный режим функционирования данной СМО суще­ствует при t →∞ оо для любого n = 0, 1, 2, ... и когда λ < μ. Система алгебраических уравнений, описывающих работу СМО при t →∞ для любого n = 0, 1, 2, ... , имеет вид


 

(20)


Решение данной системы уравнений имеет вид

(21)

где ρ = λ/μ < 1.


Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

• среднее число находящихся в системе клиентов (заявок) на обслуживание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

(24)

 

средняя продолжительность пребывания клиента в очереди:

(25)

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

 

Требуется определить финальные значения следующих вероят­ностных характеристик:

вероятности состояний системы (поста диагностики);

- среднее число автомобилей, находящихся в системе (на обслу­живании и в очереди);

- среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

- среднее число автомобилей в очереди на обслуживании;

- среднюю продолжительность пребывания автомобиля в очереди.

Решение

 

1. Параметр потока обслуживания μ и приведенная интенсив­ность потока автомобилей ρ определены в примере 2:

μ= 0,952; ρ = 0,893.

 

2. Вычислим предельные вероятности системы по формулам

Р0 = 1 - ρ = 1 - 0,893 = 0,107;

Р1 = (1 - ρ) . ρ = (1 - 0,893)*0,893 = 0,096;

Р2 = (1 - ρ) . ρ2 = (1 - 0,893)*0,8932 = 0,085;

Рз = (1 - ρ) . ρ3 = (1 - 0,893)*0,8933 = 0,076;

Р4 = (1 - ρ) . ρ 4 = (1 - 0,893)* 0,8934 = 0,068;

Р5 = (1 - ρ) . ρ5 = (1 - 0,893)*0,8935 = 0,061 и т. д.

Следует отметить, что Р0 определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаива­ет). В нашем примере она составляет 10,7%, так как Р0 = 0,107.

3. Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди):

 

4. Средняя продолжительность пребывания клиента в системе:

 

 

5. Среднее число автомобилей в очереди на обслуживание:

 

 

6. Средняя продолжительность пребывания автомобиля в очереди:

 

 

7. Относительная пропускная способность системы:

q = 1,

т. е. каждая заявка, пришедшая в систему, будет обслужена.

 

8. Абсолютная пропускная способность:

А = λ* q = 0,85 * 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота m возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

 

m=λ*PN

 

В нашем примере при N = 3 + 1 = 4 и ρ = 0,893

 

m=λ*P04=0.85*0.248*0.8934=0.134 автомобиля в час.

 

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 * 0,134 = 1,6 автомобиля. Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем при мере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.

 

4.4 Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания

 

В подавляющем большинстве случаев на практике системы мас­сового обслуживания являются многоканальными, и, следователь­но, модели с n обслуживающими каналами (где n > 1) представляют несомненный интерес.

Процесс массового обслуживания, описываемый данной моде­лью, характеризуется интенсивностью входного потока λ, при этом параллельно может обслуживаться не более n клиентов (заявок). Средняя продолжительность обслуживания одной заявки равняет­ся l/μ. Входной и выходной потоки являются пуассоновскими. Ре­жим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих ка­налов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения. Конечная цель исполь­зования n параллельно включенных обслуживающих каналов за­ключается в повышении (по сравнению с одноканальной систе­мой) скорости обслуживания требований за счет обслуживания од­новременно n клиентов.

Граф состояний многоканальной системы массового обслужи­вания с отказами имеет вид, показанный на рис. 4.3.

 

 

Состояния данной СМО имеют следующую интерпретацию:

S0 - все каналы свободны;

S1 - занят один канал, остальные свободны;

……………………….

Sk - заняты ровно k каналов, остальные свободны;

……………………….

Sn - заняты все n каналов, заявка получает отказ в обслужива­нии.

Уравнения Колмогорова для вероятностей состояний системы Р0, …, Pk,…, Рn будут иметь следующий вид:

(26)

 

Начальные условия решения системы таковы:

P0(0)=1, P1(0)=P2(0)=…=Pk(0)=…=Pn(0)=0.

Стационарное решение системы имеет вид:

(27)

где .

 

Формулы для вычисления вероятностей Pk называются форму­лами Эрланга.

Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме:

- вероятность отказа:

(28)

так как заявка получает отказ, если приходит в момент, когда все n каналов заняты. Величина Ротк характеризует полноту обслужива­ния входящего потока;

- вероятность того, что заявка будет принята к обслуживанию (она же — относительная пропускная способность системы q) допол­няет Ротк до единицы:

(29)

 

- абсолютная пропускная способность

 

A=λ*q=λ*(1-Pотк); (30)

 

- среднее число каналов, занятых обслуживанием следующее:

 

(31)

Оно характеризует степень загрузки системы.

Пример 4. Пусть n-канальная СМО представляет собой вы­числительный центр (ВЦ) с тремя (n = 3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступаю­щих на ВЦ, имеет интенсивность λ = 1 задаче в час. Средняя про­должительность обслуживания tобсл = 1,8 час. Поток заявок на ре­шение задач и поток обслуживания этих заявок являются простей­шими.

Требуется вычислить финальные значения:

- вероятности состояний ВЦ;

- вероятности отказа в обслуживании заявки;

- относительной пропускной способности ВЦ;

- абсолютной пропускной способности ВЦ;

- среднего числа занятых ПЭВМ на ВЦ.

Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза.

Решение

1. Определим параметр μ потока обслуживании:

2. Приведенная интенсивность потока заявок

ρ=λ/μ=1/0.555=1.8

3. Предельные вероятности состояний найдем по формулам Эр-
ланга (27):

 

P1=1.8*0.186=0.334;

P2=1.62*0.186=0.301;

P3=0.97*0.186=0.180.

 

4. Вероятность отказа в обслуживании заявки

Pотк=P3=0.180

5. Относительная пропускная способность ВЦ

q = 1 - Pотк = 1 - 0.180 = 0,820.

6. Абсолютная пропускная способность ВЦ

А = λ • q = 1 • 0,820 = 0,820.

7. Среднее число занятых каналов — ПЭВМ

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех — остальные полтора будут простаивать. Работу рассмотренного ВЦ вряд ли можно счи­тать удовлетворительной, так как центр не обслуживает заявки в среднем в 18% случаев (P3 =0,180). Очевидно, что пропускную способность ВЦ при данных λ и μ можно увеличить только за счет увеличения числа ПЭВМ.

Определим, сколько нужно использовать ПЭВМ, чтобы сокра­тить число не обслуженных заявок, поступающих на ВЦ, в 10 раз, т.е. чтобы вероятность отказа в решении задач не превосходила 0,0180. Для этого используем формулу (28):

Составим следующую таблицу:

n
P0 0,357 0,226 0,186 0,172 0,167 0,166
Pотк 0,643 0,367 0,18 0,075 0,026 0,0078

 

Анализируя данные таблицы, следует отметить, что расшире­ние числа каналов ВЦ при данных значениях λ и μ до 6 единиц ПЭВМ позволит обеспечить удовлетворение заявок на решение за­дач на 99,22%, так как при п = 6 вероятность отказа в обслужива­нии отк) составляет 0,0078.

 

4.5 Многоканальная система массового обслуживания с ожиданием

Процесс массового обслуживания при этом характери­зуется следующим: входной и выходной потоки являются пуассоновскими с интенсивностями λ и μ соответственно; параллельно обслуживаться могут не более С клиентов. Система имеет С кана­лов обслуживания. Средняя продолжительность обслуживания одного клиента равна

 

В установившемся режиме функционирование многоканальной СМО с ожиданием и неограниченной очередью может быть описа­но с помощью системы алгебраических уравнений:


(32)


Решение системы уравнений (32) имеет вид

(33) (34)


 

где

(35)


Решение будет действительным, если выполняется следующее условие:

Вероятностные характеристики функционирования в стационар­ном режиме многоканальной СМО с ожиданием и неограниченной оче­редью определяются по следующим формулам:

• вероятность того, что в системе находится n клиентов на обслу­живании, определяется по формулам (33) и (34);

• среднее число клиентов в очереди на обслуживание

(36)

 

• среднее число находящихся в системе клиентов (заявок на обслуживание и в очереди)

Ls=Lq + ρ (37)

• средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди

(38)

• средняя продолжительность пребывания клиента в системе

(39)

Рассмотрим примеры многоканальной системы массового об­служивания с ожиданием.

Пример 5. Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неис­правных механизмов, прибывающих в мастерскую, — пуассоновский и имеет интенсивность λ= 2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно t = 0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской мо­жет расти практически неограниченно.

Требуется вычислить следующие предельные значения вероят­ностных характеристик системы:

- вероятности состояний системы;

- среднее число заявок в очереди на обслуживание;

- среднее число находящихся в системе заявок;

- среднюю продолжительность пребывания заявки в очереди;

- среднюю продолжительность пребывания заявки в системе.

Решение

1. Определим параметр потока обслуживаний

μ = 1/t=1/0,5 = 2.

2. Приведенная интенсивность потока заявок

ρ = λ/μ = 2,5/2,0 = 1,25,

при этом λ/μ *с= 2,5/2 * 3 = 0,41.

Поскольку λ/μ * с <1 , то очередь не растет безгранично и в сис­теме наступает предельный стационарный режим работы.

3. Вычислим вероятности состояний системы:

4. Вероятность отсутствия очереди у мастерской

5. Среднее число заявок в очереди на обслуживание

6. Среднее число находящихся в системе заявок

Ls = Lq +ρ = 0,111 + 1,25 = 1,361.

7. Средняя продолжительность пребывания механизма в очереди на обслуживание

8. Средняя продолжительность пребывания механизма в мас­терской (в системе)

 

 


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций Имитационное моделирование экономических процессов

ГОУ ВПО Кубанский государственный технологический.. Универсистет Кафедра вычислительной техники и АСУ..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Одноканальная СМО с ожиданием

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие имитационного моделирования
  Имитационное моделирование (ИМ) – распространённая разновидность аналогов моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующ

Основные функции ИМ
  Для создания ИМ необходима специальная система моделирования, имеющая набор языковых средств, сервисные подпрограммы, приёмы и технологии программирования. ИМ должна отражать большо

Типовые задачи, решаемые средствами компьютерного моделирования
  - моделирование процессов логистики для определения временных и стоимостных параметров; - управление процессом реализации инвестиционного проекта на различных этапах его жи

Понятие корреляционного и регрессионного анализа
  Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениям

Определение параметров линейного однофакторного уравнения регрессии
Пусть у нас имеются данные о доходах ( x ) и спросе на некоторый товар ( y ) за ряд лет ( n ): Год i Доход x

Оценка величины погрешности линейного однофакторного уравнения
  1. Обозначим разность между фактическим значением результативного признака и его расчетным значением как u i :

Проблема автокорреляции остатков. Критерий ДарбинаУотсона
  Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.

Двухфакторные и многофакторные уравнения регрессии
  Линейное двухфакторное уравнение регрессии имеет вид где a , b 1 , b

Конструирования целевой функции
  Допустим, объект оптимизации описывается следующей системой уравнений: х2 + у2 = 1 х + у = 1 Графически эту систему можно представит

Многомерный и одномерный поиск оптимума
  МСС представляет собой многомерный поиск, т.к. минимум ищется на разных направлениях. Когда минимум ищется только в одном направлении для уточнения направления следующего уровня - о

Понятие оптимизационных задач и оптимизационных моделей
  Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурс

Оптимизационные задачи с линейной зависимостью между переменными
  Пусть: b i количество ресурса вида i ( i = 1, 2, ..., m ); a i , j норма расхода

Геометрическая интерпретация ОЗЛП
  Пусть необходимо найти оптимальный план производства двух видов продукции ( x 1 и x 2 ), т.е. такой план, при котором целевая функция (общая приб

Симплексный метод решения ОЗЛП
Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом знач

Решение двойственной задачи ЛП
  Оптимизационная модель прямой задачи линейного программирования выглядит так: В системе неравенств должны

Общие понятия систем массового обслуживания
  Системы массового обслуживания — это такие системы, в кото­рые в случайные моменты времени поступают заявки на обслужи­вание, при этом поступившие заявки обслуживаются с помощью име

Альтернативные подходы к созданию имитационных моделей
  Разработчики моделирования изначально направляли свои усилия на поиск новых и более совершенных способов моделирования систем, используя при этом сущест­вующее компьютерное оборудов

Непрерывное моделирование
  Непрерывное моделирование — это моделирование системы по времени с помо­щью представления, в котором переменные состояния меняются непрерывно по отношению ко времени. Как правило, в

Теоретические основы метода
  Метод статистического моделирования (или метод Монте-Кар­ло) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не извес

Моделирование систем массового обслуживания с использованием метода Монте-Карло
  Рассмотренные аналитические методы анализа СМО ис­ходят из предположения, что входящие и исходящие потоки требо­ваний являются простейшими. Зависимости, используемые в этих методах

Постановка задачи
  Компании, продающей один вид продукции, необходимо определить, какое коли­чество товара она должна иметь в запасе на каждый из последующих n мес. (n — заданный входной параметр). Пр

Постановка задачи
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них яв­ляется, как правило, распределение ресурсов, находящихся у т производител

Алгоритм метода потенциалов
  Наиболее распространенным методом решения транспортных задач является метод потенциалов. Решение задачи методом потенциалов включает следующие этапы: 1. разработку

Принятие решений в условиях полной определенности
  Математические модели исследуемых явлений или процессов могут быть заданы в виде таблиц, элементами которых являются значения частных критериев эффективности функционирования систем

Принятие решений в условиях риска
  Основными критериями оценки принимаемых решений в усло­виях риска являются: - ожидаемое значение результата; - ожидаемое значение результата в сочетании с минимиза

Принятие решений в условиях неопределенности
    Неопределенность является характеристикой внешней среды (природы), в которой принимается управленческое решение о раз­ витии (или функционировании) экономиче

Критерий Лапласа.
Этот критерий опирается на «принцип недостаточного основания» Лапласа, согласно которому все состояния «природы» Si, i = 1,n полагаются равновероятными. В соответствии с этим прин­ципом каждому сос

Теория игр
8.5.1 Общие понятия   В конфликт­ных ситуациях имеются противодействующие стороны, интересы которых противоположны. При конфликтных ситуациях решения принима

Метод линейного программирования для нахождения оптимальных стратегий в играх двух лиц с нулевой суммой
  Пусть игра m×n не имеет оптимального решения непосредст­венно в чистых стратегиях, т. е. отсутствует седловая точка (α ≠ β). Оптимальное решение необходимо иск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги