рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Моделирование систем массового обслуживания с использованием метода Монте-Карло

Моделирование систем массового обслуживания с использованием метода Монте-Карло - раздел Экономика, Конспект лекций ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ   Рассмотренные Аналитические Методы Анализа Смо Ис­Ходят Из Пр...

 

Рассмотренные аналитические методы анализа СМО ис­ходят из предположения, что входящие и исходящие потоки требо­ваний являются простейшими. Зависимости, используемые в этих методах для определения показателей качества обслуживания, спра­ведливы лишь для установившегося режима функционирования СМО. Однако в реальных условиях функционирования СМО име­ются переходные режимы, а входящие и исходящие потоки требо­ваний являются далеко не простейшими. В этих условиях для оцен­ки качества функционирования систем обслуживания широко ис­пользуют метод статистических испытаний (метод Монте-Карло). Основой решения задачи исследования функционирования СМО в реальных условиях является статистическое моделирование входя­щего потока требований и процесса их обслуживания (исходящего потока требований).

Для решения задачи статистического моделирования функциони­рования СМО должны быть заданы следующие исходные данные:

- описание СМО (тип, параметры, критерии эффективности рабо­ты системы);

- параметры закона распределения периодичности поступлений
требований в систему;

- параметры закона распределения времени пребывания требова­ния в очереди (для СМО с ожиданием);

- параметры закона распределения времени обслуживания требо­ваний в системе.

Решение задачи статистического моделирования функционирова­ния СМО складывается из следующих этапов.

Вырабатывают равномерно распределенное случайное чис­ло ξi.

Равномерно распределенные случайные числа преобразуют в
величины с заданным законом распределения:

- интервал времени между поступлениями требований в систему (ΔtTi);

- время ухода заявки из очереди (для СМО с ограниченной длиной очереди);

- длительность времени обслуживания требования каналами (ΔtОi)

3. Определяют моменты наступления событий:

- поступление требования на обслуживание;

- уход требования из очереди;

- окончание обслуживания требования в каналах системы.

Моделируют функционирование СМО в целом и накапливают статистические данные о процессе обслуживания.

Устанавливают новый момент поступления требования в си­стему, и вычислительная процедура повторяется в соответствии с изложенным.

Определяют показатели качества функционирования СМО
путем обработки результатов моделирования методами математи­ческой статистики.

Методику решения задачи рассмотрим на примере моделирова­ния СМО с отказами.

Пусть система имеет два однотипных канала, работающих с от­казами, причем моменты времени окончания обслуживания на пер­вом канале обозначим через t1i, на втором канале — через t2i. Закон распределения интервала времени между смежными поступающи­ми требованиями задан плотностью распределения f1(tT). Продол­жительность обслуживания также является случайной величиной с плотностью распределения f2(t0)}.

Процедура решения задачи будет выглядеть следующим обра­зом:

1. Вырабатывают равномерно распределенное случайное чис­
ло ξi.

2. Равномерно распределенное случайное число преобразуют в
величины с заданным законом распределения. Определяют реализацию случайного интервала времени (ΔtTi) между поступлениями требований в систему.

3. Вычисляют момент поступления заявки на обслуживание: ti=ti-1+ΔtTi.

4. Сравнивают моменты окончания обслуживания предшеству­ющих заявок на первом t1(i-1) и втором t2(i-1) каналах.

5. Сравнивают момент поступления заявки ti с минимальным
моментом окончания обслуживания (допустим, что t1(i-1) <t2(i-1) ):

а) если [ti - t1(i-1)] < 0, то заявка получает отказ и вырабатывают новый момент поступления заявки описанным способом;

б) если [ti - t1(i-1)] >= 0, то происходит обслуживание.

6. При выполнении условия 5б) определяют время обслуживания i-й заявки на первом канале Δt1i, путем преобразования случай­
ной величины ξi в величину (время обслуживания i-й заявки) с за­
данным законом распределения.

7. Вычисляют момент окончания обслуживания i-й заявки на
первом канале t1i=[ t1(i-1) +Δt1i].

8. Устанавливают новый момент поступления заявки, и вычис­лительная процедура повторяется в соответствии с изложенным.

9. В ходе моделирования СМО накапливаются статистические
данные о процессе обслуживания.

10. Определяют показатели качества функционирования систе­мы путем обработки накопленных результатов моделирования ме­тодами математической статистики.


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

ГОУ ВПО КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ... УНИВЕРСИСТЕТ Кафедра вычислительной техники и АСУ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Моделирование систем массового обслуживания с использованием метода Монте-Карло

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие имитационного моделирования
  Имитационное моделирование (ИМ) – распространённая разновидность аналогов моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующ

Основные функции ИМ
  Для создания ИМ необходима специальная система моделирования, имеющая набор языковых средств, сервисные подпрограммы, приёмы и технологии программирования. ИМ должна отражать большо

Типовые задачи, решаемые средствами компьютерного моделирования
  - моделирование процессов логистики для определения временных и стоимостных параметров; - управление процессом реализации инвестиционного проекта на различных этапах его жи

Понятие корреляционного и регрессионного анализа
  Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениям

Определение параметров линейного однофакторного уравнения регрессии
Пусть у нас имеются данные о доходах ( x ) и спросе на некоторый товар ( y ) за ряд лет ( n ): Год i Доход x

Оценка величины погрешности линейного однофакторного уравнения
  1. Обозначим разность между фактическим значением результативного признака и его расчетным значением как u i :

Проблема автокорреляции остатков. Критерий ДарбинаУотсона
  Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.

Двухфакторные и многофакторные уравнения регрессии
  Линейное двухфакторное уравнение регрессии имеет вид где a , b 1 , b

Конструирования целевой функции
  Допустим, объект оптимизации описывается следующей системой уравнений: х2 + у2 = 1 х + у = 1 Графически эту систему можно представит

Многомерный и одномерный поиск оптимума
  МСС представляет собой многомерный поиск, т.к. минимум ищется на разных направлениях. Когда минимум ищется только в одном направлении для уточнения направления следующего уровня - о

Понятие оптимизационных задач и оптимизационных моделей
  Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурс

Оптимизационные задачи с линейной зависимостью между переменными
  Пусть: b i количество ресурса вида i ( i = 1, 2, ..., m ); a i , j норма расхода

Геометрическая интерпретация ОЗЛП
  Пусть необходимо найти оптимальный план производства двух видов продукции ( x 1 и x 2 ), т.е. такой план, при котором целевая функция (общая приб

Симплексный метод решения ОЗЛП
Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом знач

Решение двойственной задачи ЛП
  Оптимизационная модель прямой задачи линейного программирования выглядит так: В системе неравенств должны

Общие понятия систем массового обслуживания
  Системы массового обслуживания — это такие системы, в кото­рые в случайные моменты времени поступают заявки на обслужи­вание, при этом поступившие заявки обслуживаются с помощью име

Одноканальная СМО с ожиданием
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­не

Альтернативные подходы к созданию имитационных моделей
  Разработчики моделирования изначально направляли свои усилия на поиск новых и более совершенных способов моделирования систем, используя при этом сущест­вующее компьютерное оборудов

Непрерывное моделирование
  Непрерывное моделирование — это моделирование системы по времени с помо­щью представления, в котором переменные состояния меняются непрерывно по отношению ко времени. Как правило, в

Теоретические основы метода
  Метод статистического моделирования (или метод Монте-Кар­ло) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не извес

Постановка задачи
  Компании, продающей один вид продукции, необходимо определить, какое коли­чество товара она должна иметь в запасе на каждый из последующих n мес. (n — заданный входной параметр). Пр

Постановка задачи
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них яв­ляется, как правило, распределение ресурсов, находящихся у т производител

Алгоритм метода потенциалов
  Наиболее распространенным методом решения транспортных задач является метод потенциалов. Решение задачи методом потенциалов включает следующие этапы: 1. разработку

Принятие решений в условиях полной определенности
  Математические модели исследуемых явлений или процессов могут быть заданы в виде таблиц, элементами которых являются значения частных критериев эффективности функционирования систем

Принятие решений в условиях риска
  Основными критериями оценки принимаемых решений в усло­виях риска являются: - ожидаемое значение результата; - ожидаемое значение результата в сочетании с минимиза

Принятие решений в условиях неопределенности
    Неопределенность является характеристикой внешней среды (природы), в которой принимается управленческое решение о раз­ витии (или функционировании) экономиче

Критерий Лапласа.
Этот критерий опирается на «принцип недостаточного основания» Лапласа, согласно которому все состояния «природы» Si, i = 1,n полагаются равновероятными. В соответствии с этим прин­ципом каждому сос

Теория игр
8.5.1 Общие понятия   В конфликт­ных ситуациях имеются противодействующие стороны, интересы которых противоположны. При конфликтных ситуациях решения принима

Метод линейного программирования для нахождения оптимальных стратегий в играх двух лиц с нулевой суммой
  Пусть игра m×n не имеет оптимального решения непосредст­венно в чистых стратегиях, т. е. отсутствует седловая точка (α ≠ β). Оптимальное решение необходимо иск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги