рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Критерий Лапласа

Критерий Лапласа - раздел Экономика, Конспект лекций Имитационное моделирование экономических процессов Этот Критерий Опирается На «Принцип Недостаточного Основания» Лапласа, Соглас...

Этот критерий опирается на «принцип недостаточного основания» Лапласа, согласно которому все состояния «природы» Si, i = 1,n полагаются равновероятными. В соответствии с этим прин­ципом каждому состоянию Si, ставится вероятность qi определяе­мая по формуле

(25)

 

При этом исходной может рассматриваться задача принятия решения в условиях риска, когда выбирается действие Rj, дающее наибольший ожидаемый выигрыш. Для принятия решения для каж­дого действия Rj вычисляют среднее арифметическое значение вы­игрыша:

(26)

Среди Mj(R) выбирают максимальное значение, которое будет соответствовать оптимальной стратегии Rj.

Другими словами, находится действие Rj , соответствующее

 

(27)

 

Если в исходной задаче матрица возможных результатов пред­ставлена матрицей рисков ||rji||, то критерий Лапласа принимает следующий вид:

(28)

Пример 4. Одно из транспортных предприятий должно опре­делить уровень своих провозных возможностей так, чтобы удовле­творить спрос клиентов на транспортные услуги на планируемый период. Спрос на транспортные услуги не известен, но ожидается (прогнозируется), что он может принять одно из четырех значений: 10, 15, 20 или 25 тыс. т. Для каждого уровня спроса существует на­илучший уровень провозных возможностей транспортного пред­приятия (с точки зрения возможных затрат). Отклонения от этих уровней приводят к дополнительным затратам либо из-за превы­шения провозных возможностей над спросом (из-за простоя по­движного состава), либо из-за неполного удовлетворения спроса на транспортные услуги. Ниже приводится таблица, определяющая возможные прогнозируемые затраты на развитие провозных воз­можностей:

Необходимо выбрать оптимальную стратегию.

 

 

Решение

Согласно условию задачи, имеются четыре варианта спроса на транспортные услуги, что равнозначно наличию четырех состояний «природы»: S1, S2, S3, S4. Известны также четыре стратегии разви­тия провозных возможностей транспортного предприятия: R1, R2, R3, R4 Затраты на развитие провозных возможностей при каждой паре Si и Rj заданы следующей матрицей (таблицей):

 

 

Принцип Лапласа предполагает, что S1, S2, S3, S4 равновероят­ны. Следовательно, P{S = Si }= 1/n= 1/4 = 0,25, i = 1, 2, 3, 4 и ожидае­мые затраты при различных действиях R1, R2, R3, R4 составляют:

Таким образом, наилучшей стратегией развития провозных воз­можностей в соответствии с критерием Лапласа будет R2.

2. Критерий Вальда (минимаксный или максиминный крите­рий). Применение данного критерия не требует знания вероятнос­тей состояний Si. Этот критерий опирается на принцип наиболь­шей осторожности, поскольку он основывается на выборе наилуч­шей из наихудших стратегий Rj.

Если в исходной матрице (по условию задачи) результат Vij представляет потери лица, принимающего решение, то при выборе оптимальной стратегии используется минимаксный критерий. Для определения оптимальной стратегии Rj необходимо в каждой строке матрицы результатов найти наибольший элемент max{Vij}, а затем выбирается действие Rj (строка j), которому будет соответствовать наименьший элемент из этих наибольших элементов, т. е. дейст­вие, определяющее результат, равный

(29)

Если в исходной матрице по условию задачи результат Vij пред­ставляет выигрыш (полезность) лица, принимающего решение, то при выборе оптимальной стратегии используется максиминный кри­терий.

Для определения оптимальной стратегии Rj в каждой строке матрицы результатов находят наименьший элемент min {Vij} , а затем выбирается действие Rj (строка j), которому будут соответство­вать наибольшие элементы из этих наименьших элементов, т. е. действие, определяющее результат, равный

(30)

Пример 5. Рассмотрим пример 4. Так как Vij в этом примере представляет потери (затраты), применим минимаксный критерий. Необходимые результаты вычисления приведены в следующей таб­лице:

 

Таким образом, наилучшей стратегией развития провозных воз­можностей в соответствии с минимаксным критерием «лучшим из худших» будет третья, т. е. R3.

Минимаксный критерий Вальда иногда приводит к нелогич­ным выводам из-за своей чрезмерной «пессимистичности». «Пес­симистичность» этого критерия исправляет критерий Сэвиджа.

 

3. Критерий Сэвиджа использует матрицу рисков || rij ||. Элементы данной матрицы можно определить по формулам (23), (24), ко­торые перепишем в следующем виде:

 

(31)

 

Это означает, что rij есть разность между наилучшим значени­ем в столбце i и значениями Vji при том же i. Неза­висимо от того, является ли Vji доходом (выигрышем) или потеря­ми (затратами), rji в обоих случаях определяет величину потерь ли­ца, принимающего решение. Следовательно, можно применять к rji только минимаксный критерий. Критерий Сэвиджа рекоменду­ет в условиях неопределенности выбирать ту стратегию Rj, при ко­торой величина риска принимает наименьшее значение в самой неблагоприятной ситуации (когда риск максимален).

Пример 6. Рассмотрим пример 4. Заданная матрица опреде­ляет потери (затраты). По формуле (31) вычислим элементы мат­рицы рисков || rij ||:

 

 

Полученные результаты вычислений с использованием крите­рия минимального риска Сэвиджа оформим в следующей таблице:

 

Введение величины риска rji, привело к выбору первой страте­гии R1, обеспечивающей наименьшие потери (затраты) в самой не­благоприятной ситуации (когда риск максимален).

Применение критерия Сэвиджа позволяет любыми путями из­бежать большого риска при выборе стратегии, а значит, избежать большего проигрыша (потерь).

4. Критерий Гурвицаоснован на следующих двух предположе­ниях: «природа» может находиться в самом невыгодном состоянии с вероятностью (1 — α) и в самом выгодном состоянии с вероятно­стью α, где α — коэффициент доверия. Если результат Vji — прибыль, полезность, доход и т. п., то критерий Гурвица записыва­ется так:

Когда Vji представляет затраты (потери), то выбирают действие, дающее

 

Если α = 0, получим пессимистический критерий Вальда.

 

Если α = 1, то приходим к решающему правилу вида max max Vji, или к так называемой стратегии «здорового оптими­ста», т. е. критерий слишком оптимистичный.

Критерий Гурвица устанавливает баланс между случаями край­него пессимизма и крайнего оптимизма путем взвешивания обоих способов поведения соответствующими весами (1 — α) и α, где 0≤α≤1. Значение α от 0 до 1 может определяться в зависимости от склонности лица, принимающего решение, к пессимизму или к оптимизму. При отсутствии ярко выраженной склонности α = 0,5 представляется наиболее разумной.

Пример 7. Критерий Гурвица используем в примере 4. Поло­жим α = 0,5. Результаты необходимых вычислений приведены ниже:

 

Оптимальное решение заключается в выборе W.

Таким образом, в примере предстоит сделать выбор, какое из возможных решений предпочтительнее:

по критерию Лапласа — выбор стратегии R2,

по критерию Вальда — выбор стратегии R3;

по критерию Сэвиджа — выбор стратегии R1;

по критерию Гурвица при α = 0,5 — выбор стратегии R1, а ес­ли лицо, принимающее решение, — пессимист (α = 0), то выбор стратегии R3.

Это определяется выбором соответствующего критерия (Лапла­са, Вальда, Сэвиджа или Гурвица).

Выбор критерия принятия решений в условиях неопределенно­сти является наиболее сложным и ответственным этапом в иссле­довании операций. При этом не существует каких-либо общих со­ветов или рекомендаций. Выбор критерия должно производить ли­цо, принимающее решение (ЛПР), с учетом конкретной специфи­ки решаемой задачи и в соответствии со своими целями, а также опираясь на прошлый опыт и собственную интуицию.

В частности, если даже минимальный риск недопустим, то сле­дует применять критерий Вальда. Если, наоборот, определенный риск вполне приемлем и ЛПР намерено вложить в некоторое пред­приятие столько средств, чтобы потом оно не сожалело, что вложе­но слишком мало, то выбирают критерий Сэвиджа.


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций Имитационное моделирование экономических процессов

ГОУ ВПО Кубанский государственный технологический.. Универсистет Кафедра вычислительной техники и АСУ..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Критерий Лапласа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие имитационного моделирования
  Имитационное моделирование (ИМ) – распространённая разновидность аналогов моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующ

Основные функции ИМ
  Для создания ИМ необходима специальная система моделирования, имеющая набор языковых средств, сервисные подпрограммы, приёмы и технологии программирования. ИМ должна отражать большо

Типовые задачи, решаемые средствами компьютерного моделирования
  - моделирование процессов логистики для определения временных и стоимостных параметров; - управление процессом реализации инвестиционного проекта на различных этапах его жи

Понятие корреляционного и регрессионного анализа
  Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениям

Определение параметров линейного однофакторного уравнения регрессии
Пусть у нас имеются данные о доходах ( x ) и спросе на некоторый товар ( y ) за ряд лет ( n ): Год i Доход x

Оценка величины погрешности линейного однофакторного уравнения
  1. Обозначим разность между фактическим значением результативного признака и его расчетным значением как u i :

Проблема автокорреляции остатков. Критерий ДарбинаУотсона
  Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.

Двухфакторные и многофакторные уравнения регрессии
  Линейное двухфакторное уравнение регрессии имеет вид где a , b 1 , b

Конструирования целевой функции
  Допустим, объект оптимизации описывается следующей системой уравнений: х2 + у2 = 1 х + у = 1 Графически эту систему можно представит

Многомерный и одномерный поиск оптимума
  МСС представляет собой многомерный поиск, т.к. минимум ищется на разных направлениях. Когда минимум ищется только в одном направлении для уточнения направления следующего уровня - о

Понятие оптимизационных задач и оптимизационных моделей
  Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурс

Оптимизационные задачи с линейной зависимостью между переменными
  Пусть: b i количество ресурса вида i ( i = 1, 2, ..., m ); a i , j норма расхода

Геометрическая интерпретация ОЗЛП
  Пусть необходимо найти оптимальный план производства двух видов продукции ( x 1 и x 2 ), т.е. такой план, при котором целевая функция (общая приб

Симплексный метод решения озлп
Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом знач

Решение двойственной задачи ЛП
  Оптимизационная модель прямой задачи линейного программирования выглядит так: В системе неравенств должны

Общие понятия систем массового обслуживания
  Системы массового обслуживания — это такие системы, в кото­рые в случайные моменты времени поступают заявки на обслужи­вание, при этом поступившие заявки обслуживаются с помощью име

Одноканальная смо с ожиданием
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­не

Альтернативные подходы к созданию имитационных моделей
  Разработчики моделирования изначально направляли свои усилия на поиск новых и более совершенных способов моделирования систем, используя при этом сущест­вующее компьютерное оборудов

Непрерывное моделирование
  Непрерывное моделирование — это моделирование системы по времени с помо­щью представления, в котором переменные состояния меняются непрерывно по отношению ко времени. Как правило, в

Теоретические основы метода
  Метод статистического моделирования (или метод Монте-Кар­ло) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не извес

Моделирование систем массового обслуживания с использованием метода Монте-Карло
  Рассмотренные аналитические методы анализа СМО ис­ходят из предположения, что входящие и исходящие потоки требо­ваний являются простейшими. Зависимости, используемые в этих методах

Постановка задачи
  Компании, продающей один вид продукции, необходимо определить, какое коли­чество товара она должна иметь в запасе на каждый из последующих n мес. (n — заданный входной параметр). Пр

Постановка задачи
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них яв­ляется, как правило, распределение ресурсов, находящихся у т производител

Алгоритм метода потенциалов
  Наиболее распространенным методом решения транспортных задач является метод потенциалов. Решение задачи методом потенциалов включает следующие этапы: 1. разработку

Принятие решений в условиях полной определенности
  Математические модели исследуемых явлений или процессов могут быть заданы в виде таблиц, элементами которых являются значения частных критериев эффективности функционирования систем

Принятие решений в условиях риска
  Основными критериями оценки принимаемых решений в усло­виях риска являются: - ожидаемое значение результата; - ожидаемое значение результата в сочетании с минимиза

Принятие решений в условиях неопределенности
    Неопределенность является характеристикой внешней среды (природы), в которой принимается управленческое решение о раз­ витии (или функционировании) экономиче

Теория игр
8.5.1 Общие понятия   В конфликт­ных ситуациях имеются противодействующие стороны, интересы которых противоположны. При конфликтных ситуациях решения принима

Метод линейного программирования для нахождения оптимальных стратегий в играх двух лиц с нулевой суммой
  Пусть игра m×n не имеет оптимального решения непосредст­венно в чистых стратегиях, т. е. отсутствует седловая точка (α ≠ β). Оптимальное решение необходимо иск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги