рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Непрерывное моделирование

Непрерывное моделирование - раздел Экономика, Конспект лекций ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ   Непрерывное Моделирование — Это Моделирование Системы По Врем...

 

Непрерывное моделирование — это моделирование системы по времени с помо­щью представления, в котором переменные состояния меняются непрерывно по отношению ко времени. Как правило, в непрерывных имитационных моделях ис­пользуются дифференциальные уравнения, которые устанавливают отношения для скоростей изменения переменных состояния во времени. Если дифференци­альные уравнения очень просты, их можно решать аналитически, чтобы предста­вить значения переменных состояния для всех значений времени как функцию значений переменных состояния в момент времени 0. При больших непрерывных моделях аналитическое решение невозможно, но для численного интегрирования дифференциальных уравнений в случае с заданными специальными значениями для переменных состояния в момент времени 0 используются технологии числен­ного анализа, например интегрирование Рунге-Кутта.

Пример 1.3.Рассмотрим непрерывную модель соперничества между двумя популяция­ми. Биологические модели такого типа, именуемые моделями хищник-добыча (или па­разит-хозяин), рассматривались многими авторами, в том числе Брауном и Гордоном. Среда представлена двумя популяциями -хищников и добычи, взаимодействующими друг с другом. Добыча пассивна, но хищни­ки зависят от ее популяции, поскольку она является для них источником пищи. (Напри­мер, хищниками могут быть акулы, а добычей — рыба, которой они питаются) Пусть x(t) и y(t) обозначают численность особей в популяциях соответственно добычи и хищников в момент времени t. Допустим, популяция добычи имеет обильные запасы пищи; при отсутствии хищников темп ее прироста составит rх(t) для некоторого положительного значения r (r — естественный уровень рождаемости минус естествен­ный уровень смертности). Существование взаимодействия между хищниками и добы­чей дает основание предположить, что уровень смертности добычи в связи с этим взаи­модействием пропорционален произведению численностей обоих популяций х(t)у(t). Поэтому общий темп изменения популяции добычи dx/dt: может быть представлен как

 

(1)

где а — положительный коэффициент пропорциональности. Поскольку существование самих хищников зависит от популяции добычи, темп изменения популяции хищников в отсутствии добычи составляет -sу(t) для некоторого положительного s. Более того, взаимодействие между двумя популяциями приводит к росту популяции хищников, темп которого также пропорционален х(t)у(t). Следовательно, общий темп изменения популяции хищников dy/dt составляет

(2)

где b — положительный коэффициент пропорциональности. При начальных условиях х(0) > 0 и y(0) >0 решение модели, определенной уравнениями ( 1) и ( 2), имеет инте­ресное свойство: х(t) > 0 и у(t) > 0 для любого t³0. Следовательно, попу­ляция добычи никогда не будет полностью уничтожена хищниками. Решение {х(t), у(t)} также является периодической функцией времени. Иными словами, существует такое значение Т>0, при котором х(t + пТ)=x(t) и у(t + пТ) = у(t) для любого положительно­го целого числа п. Такой результат не является неожиданным. По мере увеличения по­пуляции хищников популяция добычи уменьшается. Это приводит к снижению темпа роста популяции хищников и, соответственно, вызывает уменьшение их числа, что, в свою очередь, ведет к увеличению популяции добычи и т. д.

Рассмотрим отдельные значения г = 0,001, а = 2 * 10 –6; s = 0,01; b=10 -6, исходные разме­ры популяций составляют х(0) = 12 000 и y(0) = 600. На рис. представлено числен­ное решение уравнений (1) и (2), полученное при использовании вычислительного пакета, разработанного для численного решения систем дифференциальных уравнений (а не языка непрерывного моделирования).

Обратите внимание на то, что приведенный выше пример полностью детерми­нистический, то есть в нем нет случайных компонентов. Однако имитационная модель может содержать и неизвестные величины; например, в уравнения (1) и (2) могут быть добавлены случайные величины, которые каким-то образом за­висят от времени, или постоянные множители могут быть смоделированы как ве­личины, случайно изменяющие свои значения в определенные моменты времени.

 

5.3 Комбинированное непрерывно-дискретное моделирование

 

Поскольку некоторые из систем невозможно отнести ни к полностью дискретным, ни к полностью непрерывным, может возникнуть необходимость в создании моде­ли, которая объединяет в себе аспекты как дискретно-событийного, так и непре­рывного моделирования, в результате чего получается комбинированное непрерыв­но- дискретное моделирование. Между дискретным и непрерывным изменениями переменных состояния могут происходить три основных типа взаимодействия:

- дискретное событие может вызвать дискретное изменение в значении не­прерывной переменной состояния;

- в определенный момент времени дискретное событие может вызвать изме­нение отношения, управляющего непрерывной переменной состояния;

- непрерывная переменная состояния, достигшая порогового значения, мо­жет вызвать возникновение или планирование дискретного события.

В следующем примере комбинированного непрерывно-дискретного моделиро­вания дано краткое описание модели, подробно рассмотренной Прицкером, который в своей работе приводит и другие примеры этого типа моделирования.

Пример1.4. Танкеры, перевозящие нефть, прибывают в один разгрузочный док, попол­няя резервуар-хранилище, из которого нефть по трубопроводу попадает на нефтепере­гонный завод. Из разгружающегося танкера нефть подается в резервуар-хранилище с по­стоянной скоростью (Танкеры, прибывающие к занятому доку, образуют очередь.) На нефтеперегонный завод нефть подается из резервуара с различными заданными скорос­тями. Док открыт с 6.00 до 24.00. По соображениям безопасности разгрузка танкеров прекращается по закрытии дока.

Дискретными событиями в этой (упрощенной) модели являются прибытие танкера на разгрузку, закрытие дока в полночь и открытие в 6.00. Уровни нефти в разгружающемся танкере и резервуаре-хранилище задаются переменными непрерывного состояния, ско­рости изменения которых описаны с помощью дифференциальных уравнений. Разгрузка танкера считается завершенной, когда уровень нефти в тан­кере составляет менее 5 % его емкости, но разгрузка должна быть временно прекращена, если уровень нефти в резервуаре-хранилище станет равным его емкости. Разгрузка мо­жет быть возобновлена, когда уровень нефти в резервуаре станет меньше 80 % его емко­сти. В случае если уровень нефти в резервуаре станет меньше 5000 баррелей, нефтепере­гонный завод должен быть временно закрыт. Для того чтобы избежать частого закрытия и возобновления работы завода, подача нефти из резервуара на завод не будет возобнов­ляться до тех пор, пока в нем не наберется 50 000 баррелей нефти. Каждое из пяти собы­тий, связанных с уровнем нефти (например, падение уровня нефти ниже 5 % емкости танкера), по определению Прицкера, является событием состояния. В отличие от диск­ретных событий, события состояния не планируются, они происходят, когда перемен­ные непрерывного состояния переходят пороговое значение.

5.4 Моделирование по методу Монте-Карло. Статистическое моделирование систем

 

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

ГОУ ВПО КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ... УНИВЕРСИСТЕТ Кафедра вычислительной техники и АСУ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Непрерывное моделирование

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие имитационного моделирования
  Имитационное моделирование (ИМ) – распространённая разновидность аналогов моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующ

Основные функции ИМ
  Для создания ИМ необходима специальная система моделирования, имеющая набор языковых средств, сервисные подпрограммы, приёмы и технологии программирования. ИМ должна отражать большо

Типовые задачи, решаемые средствами компьютерного моделирования
  - моделирование процессов логистики для определения временных и стоимостных параметров; - управление процессом реализации инвестиционного проекта на различных этапах его жи

Понятие корреляционного и регрессионного анализа
  Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениям

Определение параметров линейного однофакторного уравнения регрессии
Пусть у нас имеются данные о доходах ( x ) и спросе на некоторый товар ( y ) за ряд лет ( n ): Год i Доход x

Оценка величины погрешности линейного однофакторного уравнения
  1. Обозначим разность между фактическим значением результативного признака и его расчетным значением как u i :

Проблема автокорреляции остатков. Критерий ДарбинаУотсона
  Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.

Двухфакторные и многофакторные уравнения регрессии
  Линейное двухфакторное уравнение регрессии имеет вид где a , b 1 , b

Конструирования целевой функции
  Допустим, объект оптимизации описывается следующей системой уравнений: х2 + у2 = 1 х + у = 1 Графически эту систему можно представит

Многомерный и одномерный поиск оптимума
  МСС представляет собой многомерный поиск, т.к. минимум ищется на разных направлениях. Когда минимум ищется только в одном направлении для уточнения направления следующего уровня - о

Понятие оптимизационных задач и оптимизационных моделей
  Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурс

Оптимизационные задачи с линейной зависимостью между переменными
  Пусть: b i количество ресурса вида i ( i = 1, 2, ..., m ); a i , j норма расхода

Геометрическая интерпретация ОЗЛП
  Пусть необходимо найти оптимальный план производства двух видов продукции ( x 1 и x 2 ), т.е. такой план, при котором целевая функция (общая приб

Симплексный метод решения ОЗЛП
Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом знач

Решение двойственной задачи ЛП
  Оптимизационная модель прямой задачи линейного программирования выглядит так: В системе неравенств должны

Общие понятия систем массового обслуживания
  Системы массового обслуживания — это такие системы, в кото­рые в случайные моменты времени поступают заявки на обслужи­вание, при этом поступившие заявки обслуживаются с помощью име

Одноканальная СМО с ожиданием
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­не

Альтернативные подходы к созданию имитационных моделей
  Разработчики моделирования изначально направляли свои усилия на поиск новых и более совершенных способов моделирования систем, используя при этом сущест­вующее компьютерное оборудов

Теоретические основы метода
  Метод статистического моделирования (или метод Монте-Кар­ло) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не извес

Моделирование систем массового обслуживания с использованием метода Монте-Карло
  Рассмотренные аналитические методы анализа СМО ис­ходят из предположения, что входящие и исходящие потоки требо­ваний являются простейшими. Зависимости, используемые в этих методах

Постановка задачи
  Компании, продающей один вид продукции, необходимо определить, какое коли­чество товара она должна иметь в запасе на каждый из последующих n мес. (n — заданный входной параметр). Пр

Постановка задачи
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них яв­ляется, как правило, распределение ресурсов, находящихся у т производител

Алгоритм метода потенциалов
  Наиболее распространенным методом решения транспортных задач является метод потенциалов. Решение задачи методом потенциалов включает следующие этапы: 1. разработку

Принятие решений в условиях полной определенности
  Математические модели исследуемых явлений или процессов могут быть заданы в виде таблиц, элементами которых являются значения частных критериев эффективности функционирования систем

Принятие решений в условиях риска
  Основными критериями оценки принимаемых решений в усло­виях риска являются: - ожидаемое значение результата; - ожидаемое значение результата в сочетании с минимиза

Принятие решений в условиях неопределенности
    Неопределенность является характеристикой внешней среды (природы), в которой принимается управленческое решение о раз­ витии (или функционировании) экономиче

Критерий Лапласа.
Этот критерий опирается на «принцип недостаточного основания» Лапласа, согласно которому все состояния «природы» Si, i = 1,n полагаются равновероятными. В соответствии с этим прин­ципом каждому сос

Теория игр
8.5.1 Общие понятия   В конфликт­ных ситуациях имеются противодействующие стороны, интересы которых противоположны. При конфликтных ситуациях решения принима

Метод линейного программирования для нахождения оптимальных стратегий в играх двух лиц с нулевой суммой
  Пусть игра m×n не имеет оптимального решения непосредст­венно в чистых стратегиях, т. е. отсутствует седловая точка (α ≠ β). Оптимальное решение необходимо иск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги