рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теоретические основы метода

Теоретические основы метода - раздел Экономика, Конспект лекций ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ   Метод Статистического Моделирования (Или Метод Монте-Кар­Ло) ...

 

Метод статистического моделирования (или метод Монте-Кар­ло) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не извест­ны в полной мере внутренние взаимодействия в этих системах. Название метода Монте-Карло появилось во вре­мя второй мировой войны, когда этот подход был применен к проблемам, связан­ным с разработкой атомной бомбы

Этот метод заключается в воспроизведении исследуемого физи­ческого процесса при помощи вероятностной математической мо­дели и вычислении характеристик этого процесса. Одно такое вос­произведение функционирования системы называют реализацией или испытанием. После каждого испытания регистрируют сово­купность параметров, характеризующих случайный исход реализа­ции. Метод основан на многократных испытаниях построенной модели с последующей статистической обработкой полученных данных с целью определения числовых характеристик рассматрива­емого процесса в виде статистических оценок его параметров. Про­цесс моделирования функционирования экономической системы сводится к машинной имитации изучаемого процесса, который как бы копируется на ЭВМ со всеми сопровождающими его случайно­стями. Первые сведения о методе Монте-Карло были опубликованы в конце 40-х гг. Авторами метода являются американские математи­ки Дж. Нейман и С. Улам. В нашей стране первые работы были опубликованы в 1955-1956 гг. В.В. Чавчанидзе, Ю.А. Шрейдером и B.C. Владимировым.

Основой метода статистического моделирования является за­кон больших чисел. Закон больших чисел в теории вероятностей доказывает для различных условий сходимость по вероятности средних значений результатов большого числа наблюдений к неко­торым постоянным величинам.

Под законом больших чисел понимают ряд теорем. Например, одна из теорем П.Л. Чебышева формулируется так: «При неограни­ченном увеличении числа независимых испытаний п среднее ариф­метическое свободных от систематических ошибок и равноточных результатов наблюдений ξi случайной величины ξ, имеющей ко­нечную дисперсию D(ξ), сходится по вероятности к математичес­кому ожиданию М(ξ) этой случайной величины». Это можно запи­сать в следующем виде:

(1)

где ε — сколь угодно малая положительная величина.

Теорема Бернулли формулируется так: «При неограниченном увеличении числа независимых испытаний в одних и тех же усло­виях частота Р*(А) наступления случайного события А сходится по вероятности к его вероятности Р», т. е.

(2)

Согласно данной теореме, для получения вероятности какого-либо события, например вероятности состояний некоторой системы Рi(t),i = 0,k, вычисляют частоты для одной реализации (испытания), далее проводят подобные вычисления для числа реализаций, равного п. Результаты усредняют и этим самым с не­которым приближением, получают искомые вероятности состоя­ний системы. На основании вычисленных вероятностей определя­ют другие характеристики системы. Следует отметить, что, чем больше число реализаций n, тем точнее результаты вычисления ис­комых величин (вероятностей состояний системы).

Последнее утверждение легко доказать. Предположим, что тре­буется найти неизвестную величину m. Подберем такую случайную величину ξ, чтобы М(ξ) = m и D(ξ) = b2. Рассмотрим n случайных величин ξ1, ξ2, ξ3,…, ξn распределение которых совпадает с рас­пределением ξ. Если n достаточно велико, то согласно центральной предельной теореме распределение суммы ρn= ξ1 + ξ2 + … + ξn будет приближенно нормальным с параметрами а = n• m; σ2 = n • b2.

Из правила «трёх сигм»

(3)

следует, что

Разделим неравенство, стоящее в фигурной скобке, на n и по­лучим эквивалентное неравенство с той же вероятностью:

Это соотношение можно записать в виде

(4)

Соотношение (4) определяет метод расчета m и оценку по­грешности. В самом деле, найдем n значений случайной величины ξ. Из выражения (4) видно, что среднее арифметическое этих зна­чений будет приближенно равно m. С вероятностью Р = 0,997 ошибка такого приближения не превосходит величины . Очевидно, эта ошибка стремится к нулю с ростом n, что и требовалось доказать. Решение любой задачи методом статистического моделирования состоит в:

- разработке и построении структурной схемы процесса, выявле­нии основных взаимосвязей;

- формальном описании процесса;

- моделировании случайных явлений (случайных событий, слу­
чайных величин, случайных функций), сопровождающих функ­ционирование исследуемой системы;

- моделировании (с использованием данных, полученных на пре­дыдущем этапе) функционирования системы – воспроизведении
процесса в соответствии с разработанной структурной схемой и
формальным описанием;

- накоплении результатов моделирования, их статистической об­работке, анализе и обобщении.

В отличие от описанных ранее математических моделей, ре­зультаты которых отражали устойчивое во времени поведение сис­темы, результаты, получаемые при статистическом моделировании, подвержены экспериментальным ошибкам. Это означает, что лю­бое утверждение, касающееся характеристик моделируемой систе­мы, должно основываться на результатах соответствующих статис­тических проверок.

Экспериментальные ошибки при статистическом моделирова­нии в значительной степени зависят от точности моделирования случайных явлений, сопровождающих функционирование исследу­емой системы.

Известно, что при изучении вероятностных систем случайные явления могут интерпретироваться в виде случайных событий, слу­чайных величин и случайных функций. Следовательно, моделиро­вание случайных явлений сводится к моделированию случайных событий, случайных величин и случайных функций. Так как слу­чайные события и случайные функции могут быть представлены через случайные величины, то и моделирование случайных собы­тий и случайных функций производится с помощью случайных ве­личин. В связи с этим рассмотрим сначала способы моделирования случайных величин.

 

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

ГОУ ВПО КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ... УНИВЕРСИСТЕТ Кафедра вычислительной техники и АСУ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теоретические основы метода

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие имитационного моделирования
  Имитационное моделирование (ИМ) – распространённая разновидность аналогов моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующ

Основные функции ИМ
  Для создания ИМ необходима специальная система моделирования, имеющая набор языковых средств, сервисные подпрограммы, приёмы и технологии программирования. ИМ должна отражать большо

Типовые задачи, решаемые средствами компьютерного моделирования
  - моделирование процессов логистики для определения временных и стоимостных параметров; - управление процессом реализации инвестиционного проекта на различных этапах его жи

Понятие корреляционного и регрессионного анализа
  Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениям

Определение параметров линейного однофакторного уравнения регрессии
Пусть у нас имеются данные о доходах ( x ) и спросе на некоторый товар ( y ) за ряд лет ( n ): Год i Доход x

Оценка величины погрешности линейного однофакторного уравнения
  1. Обозначим разность между фактическим значением результативного признака и его расчетным значением как u i :

Проблема автокорреляции остатков. Критерий ДарбинаУотсона
  Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.

Двухфакторные и многофакторные уравнения регрессии
  Линейное двухфакторное уравнение регрессии имеет вид где a , b 1 , b

Конструирования целевой функции
  Допустим, объект оптимизации описывается следующей системой уравнений: х2 + у2 = 1 х + у = 1 Графически эту систему можно представит

Многомерный и одномерный поиск оптимума
  МСС представляет собой многомерный поиск, т.к. минимум ищется на разных направлениях. Когда минимум ищется только в одном направлении для уточнения направления следующего уровня - о

Понятие оптимизационных задач и оптимизационных моделей
  Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурс

Оптимизационные задачи с линейной зависимостью между переменными
  Пусть: b i количество ресурса вида i ( i = 1, 2, ..., m ); a i , j норма расхода

Геометрическая интерпретация ОЗЛП
  Пусть необходимо найти оптимальный план производства двух видов продукции ( x 1 и x 2 ), т.е. такой план, при котором целевая функция (общая приб

Симплексный метод решения ОЗЛП
Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом знач

Решение двойственной задачи ЛП
  Оптимизационная модель прямой задачи линейного программирования выглядит так: В системе неравенств должны

Общие понятия систем массового обслуживания
  Системы массового обслуживания — это такие системы, в кото­рые в случайные моменты времени поступают заявки на обслужи­вание, при этом поступившие заявки обслуживаются с помощью име

Одноканальная СМО с ожиданием
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­не

Альтернативные подходы к созданию имитационных моделей
  Разработчики моделирования изначально направляли свои усилия на поиск новых и более совершенных способов моделирования систем, используя при этом сущест­вующее компьютерное оборудов

Непрерывное моделирование
  Непрерывное моделирование — это моделирование системы по времени с помо­щью представления, в котором переменные состояния меняются непрерывно по отношению ко времени. Как правило, в

Моделирование систем массового обслуживания с использованием метода Монте-Карло
  Рассмотренные аналитические методы анализа СМО ис­ходят из предположения, что входящие и исходящие потоки требо­ваний являются простейшими. Зависимости, используемые в этих методах

Постановка задачи
  Компании, продающей один вид продукции, необходимо определить, какое коли­чество товара она должна иметь в запасе на каждый из последующих n мес. (n — заданный входной параметр). Пр

Постановка задачи
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них яв­ляется, как правило, распределение ресурсов, находящихся у т производител

Алгоритм метода потенциалов
  Наиболее распространенным методом решения транспортных задач является метод потенциалов. Решение задачи методом потенциалов включает следующие этапы: 1. разработку

Принятие решений в условиях полной определенности
  Математические модели исследуемых явлений или процессов могут быть заданы в виде таблиц, элементами которых являются значения частных критериев эффективности функционирования систем

Принятие решений в условиях риска
  Основными критериями оценки принимаемых решений в усло­виях риска являются: - ожидаемое значение результата; - ожидаемое значение результата в сочетании с минимиза

Принятие решений в условиях неопределенности
    Неопределенность является характеристикой внешней среды (природы), в которой принимается управленческое решение о раз­ витии (или функционировании) экономиче

Критерий Лапласа.
Этот критерий опирается на «принцип недостаточного основания» Лапласа, согласно которому все состояния «природы» Si, i = 1,n полагаются равновероятными. В соответствии с этим прин­ципом каждому сос

Теория игр
8.5.1 Общие понятия   В конфликт­ных ситуациях имеются противодействующие стороны, интересы которых противоположны. При конфликтных ситуациях решения принима

Метод линейного программирования для нахождения оптимальных стратегий в играх двух лиц с нулевой суммой
  Пусть игра m×n не имеет оптимального решения непосредст­венно в чистых стратегиях, т. е. отсутствует седловая точка (α ≠ β). Оптимальное решение необходимо иск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги