рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Визначення модуля Юнга сталі статичним методом за деформацією розтягу

Визначення модуля Юнга сталі статичним методом за деформацією розтягу - раздел Финансы, Болонський процес та кредитно-модульна система організації навчального процесу___________________________________________________________ Похибки вимірювань фізичних величин   Мета Лабораторної Роботи: Визна...

 

Мета лабораторної роботи:

Визначення модуля Юнга сталі статичним методом за деформацією розтягу дротини.

 

Деякі теоретичні відомості

 

Усі тверді тіла під дією сил деформуються, тобто змінюють об’єм і форму. Розрізняють деформації розтягу, стиску, зсуву, кручення, згину (три останні зводяться до суперпозиції двох перших).

Якщо деформації зникають після припинення дії прикладених зовнішніх сил, то вони називаються пружними. Деформації, які зберігаються після припинення дії зовнішніх сил, називаються пластичними. Розділення деформацій на пружні і пластичні є умовним, оскільки після дії будь якої сили у реальному твердому тілі залишаються остаточні деформації. Але якщо вони є дуже малими, то деформації вважають пружними.

Для пружних тіл між діючими силами і викликаними ними деформаціями існує однозначна залежність (при пластичних деформаціях такої однозначності немає). Як показали експериментальні дослідження, малі пружні деформації тіл прямо пропорційні зовнішнім силам, які їх спричинили. Якщо тіло знаходиться у рівновазі, то це означає що зовнішні сили зрівноважені пружними силами, які виникли у тілі внаслідок його деформації. Ці сили намагаються надати тілу попередніх розмірів і форми. Встановлено, що для багатьох твердих тіл існують області малих пружних деформацій (різні у кожному випадку).

Кількісною мірою, яка характеризує ступінь деформації, є відносна деформація, яка визначається відношенням абсолютної деформації до величини, яка характеризує вихідні розміри і форму тіла.

Одним із типів пружних деформацій є деформація розтягу. Розглянемо деформацію розтягу на прикладі однорідного ізотропного зразка, наприклад стрижня довжиною (рис.1).

 

Рис.1

 

До кінців стрижня прикладені направлені вздовж його осі рівні сили . Пружну силу, яка діє на одиницю площі поперечного перерізу тіла, називається напруженням (механічним напруженням). Модуль цієї сили визначається за формулою:

. (1)

Якщо сила направлена до нормалі до поверхні, то напруження називається нормальним , а якщо воно направлене по дотичній до поверхні, то дотичним (тангенціальним) .

Під дією сил, стрижень пружно деформується, у результаті чого, його довжина змінюється на величину . Відносна деформація стрижня , яка у даному випадку називається відносним видовженням, визначається за формулою

. (2)

Одночасно з деформацією розтягу стрижня, яка характеризується його відносним видовженням відбувається зменшення його поперечних розмірів, яке характеризується відносною поперечною деформацією .

Відповідно до закону Гука напруження пружної деформації розтягу пропорційне відносному видовженню стрижня:

, (3)

де - модуль пружності, який залежить від речовини, з якої виготовлено стрижень, і його фізичного стану. Цей модуль був уведений англійським вченим Т. Юнгом і носить його ім’я.

Поклавши у виразі (3) , знайдемо, що модуль Юнга чисельно дорівнює напруженню, яке виникло б у разі збільшення довжини досліджуваного зразка (у даному випадку довжини стрижня) у 2 рази за інших незмінних умов. Насправді майже всі матеріали руйнуються (розриваються) раніше, ніж вони будуть видовжені вдвічі (виняток – гума). Величина називається коефіцієнтом пружності при деформації розтягу. Вона є пружною характеристикою матеріалу, з якого виготовлено стрижень.

Розглянемо діаграму напружень, яка на якісному рівні відображає залежність між прикладеним напруженням і відносним видовженням металічного зразка.

 

 

Рис.2

 

Аналізуючи цей графік можна зробити висновок щодо того, що лінійна залежність між і , встановлена Гуком, виконується лише в певних вузьких межах до межі пропорційності . При подальшому збільшенні напруження деформація є ще пружною, хоч залежність між і є вже нелінійною і до межі пружності остаточні деформації у тілі ще не виникають. За межею пружності в тілі виникають остаточні деформації і графік, який описує повернення тіла у вихідний стан після припинення дії сили, зображується не кривою ВО, а паралельною їй кривою CF. Напруження, при якому проявляється помітна остаточна деформація , називається межею текучості () У області: СD – тіло ніби «тече». Ця область називається областю текучості (або областю пластичних деформацій). При подальшому розтягу (за точку D) напруження спочатку різко збільшується, а потім зменшується і здійснюється руйнування тіла. Максимальне напруження, яке виникає у тілі до руйнування, називається межею міцності ().

Для експериментального визначення модуля Юнга певного матеріалу може бути використаний поздовжній розтяг дротини, виготовленої з цього матеріалу.

Дротина циліндричної форми, початкової довжини , і діаметра , яка виготовлена з досліджуваного матеріалу, розтягується під дією вантажу . Площа поперечного перерізу дротини , а нормальне напруження . Закон Гука у цьому випадку можна представити у вигляді

, (4)

де коефіцієнт пропорційності - практично постійна для даного зразка величина.

Якщо змінюючи навантаження дротини вимірювати абсолютне видовження дротини і розраховувати нормальне напруження , яке його спричинило, то можна побудувати графік залежності . За нахилом цього графіка можна визначити модуль Юнга. Отже

. (5)

 

Опис експериментальної установки.

 

 

Рис.3

 

Схему установки, призначеної для визначення модуля Юнга за деформацією розтягу, наведено на рис.3. Стальна дротина 1 розтягується під дією змінних вантажів, вагою які поміщуються на платформу 2. Довжина дротини вимірюється рулеткою, а її діаметр – мікрометром. Абсолютне видовження дротини вимірюють за допомогою катетометра 3, спостерігаючи у зорову трубу катетометра за вертикальним зміщенням горизонтальної мітки, закріпленої на дротині, яке відбувається при навантаженні (розвантаженні) дротини.

 

Порядок виконання роботи.

 

1. Визначте ціну поділки катетометра. Для цього сумістіть візирний хрест, або один з штрихів вертикальної шкали окуляра зорової труби катетометра (так звану реперну точку) з одним із штрихів вертикально поставленої еталонної лінійки і відлічіть показання на основній вертикальній шкалі та на лімбі катетометра. Повертаючи лімб, перемістіть зорову трубу катетометра так, щоб на візирний хрест або вибраний для вимірювань один з штрихів окулярної шкали змістився на декілька міліметрів. Після цього знову відлічіть показання за основною шкалою та за лімбом катетометра. Різниця результатів цих двох відліків дає вертикальне переміщення реперної точки в поділках катетометра n. Поділивши переміщення реперної точки за шкалою еталонної лінійки в міліметрах на переміщення, виражене в поділках катетометра, отримайте ціну поділки катетометра у міліметрах.

2. Виміряйте в кількох місцях і у різних ( наприклад у взаємно перпендикулярних напрямах) діаметр дротини d та визначте його середнє значення.

3. Виміряйте ефективну довжину дротини (відстань від точки її закріплення у кронштейні до мітки, яку використовують для визначення абсолютної деформації дротини).

4. Навантажуючи платформу спочатку одним вантажем маси , а потім додаючи по одному ще два вантажі і, тим самим, послідовно збільшуючи навантаження дротини, визначте за допомогою катетометра не менше ніж по три рази абсолютне видовження дротини у поділках катетометра . Результати досліджень запишіть у таблицю №1.

5. Розвантажуючи платформу, тобто знімаючи з неї по одному вантажі маси , і, тим самим послідовно зменшуючи навантаження дротини, визначте за допомогою катетометра не менше ніж три рази абсолютне видовження дротини у поділках катетометра . Результати досліджень запишіть у таблицю №1.

6. За отриманими даними обчисліть відносне видовження дротини та нормальне напруження.

7. Побудуйте графік залежності відносного видовження дротини від нормального напруження.

8. За нахилом цього графіка визначте модуль Юнга. Розрахуйте відносну і абсолютну похибки, з якими ви визначили цей модуль пружності. Порівняйте одержане значення Е з табличним значенням величини модуля Юнга сталі, яке наведено у довідковій таблиці у Додатку №4. Зробіть висновки.

Таблиця №1

m, кг   P, Н n, у поділках , у по-діл-ках L, мм L/L0, відн. од.   , Па Е, Па
1 2 3
Нав. Розв. Нав. Розв. Нав. Розв.
                         

 

Література: [1-15,19-38,47]


Лабораторна робота №9

 

– Конец работы –

Эта тема принадлежит разделу:

Болонський процес та кредитно-модульна система організації навчального процесу___________________________________________________________ Похибки вимірювань фізичних величин

ПЕРЕДМОВА I ВСТУПНЕ... I ВСТУПНЕ ЗАНЯТТЯ... Болонський процес та кредитно модульна система організації навчального...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Визначення модуля Юнга сталі статичним методом за деформацією розтягу

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПЕРЕДМОВА
  У цьому навчальному посібнику зібрані нові описи експериментальних лабораторних робіт з механіки, які виконують студенти 1 курсу фізичного та радіофізичного факультетів Харківського

Болонський процес та кредитно-модульна система організації навчального процесу
  У передмові вже згадувалось про Болонський процес, яким називають процес структурного реформування національних систем вищої освіти європейських країн , що був започаткований 19 чер

Класифікація вимірювань
  Наукове спостереження полягає в цілеспрямованому і планомірному сприйнятті властивостей предметів і явищ дійсності для одержання відповідної інформації про об’єкт пізнання за допомо

Похибки прямих вимірювань
  При будь-якому вимірюванні фізичної величини, як би старанно його не проводили, неминучі похибки, тобто виміряти величину абсолютно точно неможна. Вимірювання фізичної величини не м

Випадкова похибка.
З досвіду відомо, що багаторазові вимірювання тієї самої величини, проведені найточнішими приладами, дають значення, які дещо відрізняються одне від одного. У такому випадку має місце випадкова пох

Алгоритм проведення прямих вимірювань та обробки їх результатів
  Підкреслимо, що спочатку необхідно визначитися, з якою відносною похибкою потрібно виміряти фізичну величину та який очікуваний порядок цієї величини. Відповідно до цього добирають

Алгоритм обробки результатів непрямих вимірювань
  Похибки посередніх вимірювань визначаються за похибками безпосередньо вимірюваних величин. Безпосередньо вимірювані величини

Наближені обчислення
  Важливим питанням є те, скільки значущих цифр слід зберігати в результаті кожної дії. Точність обчислень результатів вимірювання має відповідати точності вимірювань. Виконувати обчи

Рекомендації щодо графічного зображення та опрацювання результатів експерименту
  У багатьох випадках при обробці результатів фізичного експерименту слід вдаватися до графічного методу, який дає можливість наочніше подавати результати експерименту у вигляді графі

Визначення густини сухого повітря та універсальної газової сталої за методом відкачки
  Мета лабораторної роботи: Визначення густини сухого повітря та універсальної газової сталої за даними вимірювань залежності тиску сухого повітря від його маси

Визначення густини твердих тіл пікнометром
  Мета лабораторної роботи: Ознайомлення з основами методики визначення густини твердих тіл за допомогою пікнометра. Деякі теоретичні відомості

Вивчення обертального руху твердого тіла за допомогою маятника Обербека.
  Мета лабораторної роботи: Вивчення основного закону динаміки обертального руху твердого тіла, визначення моменту інерції хрестовини маятника Обербека.

За допомогою оборотного фізичного маятника.
  Мета лабораторної роботи: Визначення прискорення сили земного тяжіння падіння за допомогою оборотного фізичного маятника. Деякі теоретич

Вивчення коливань зв’язаних маятників
  Мета лабораторної роботи: Вивчення особливостей коливань зв’язаної системи.  

Визначення моменту інерції тіл різної форми методом крутильних коливань трифілярного підвісу
  Мета лабораторної роботи: Визначення моменту інерції твердих тіл різної форми методом крутильних коливань трифілярного підвісу.  

Визначення швидкості звуку в твердих тілах і пружних сталих твердих тіл динамічно-акустичним методом
  Мета лабораторної роботи: Визначення швидкості звуку і модуля Юнга та інших пружних сталих шляхом вимірювання резонансних частот подовжніх звукових кол

Визначення модуля зсуву сталі статичним методом за деформацією кручення
  Мета лабораторної роботи: Визначення модуля зсуву сталі статичним методом за деформацією кручення стрижня. Деякі теоретичні відомості

Визначення модуля Юнга сталі за методом деформації згину
  Мета лабораторної роботи Дослідження пружних властивостей стрижня при його згинанні. Визначення модуля Юнга сталі за методом деформації згину бруска.

Вивчення поля швидкостей повітряного потоку за допомогою трубки Піто-Прандтля
  Мета лабораторної роботи: Вивчення динамічних характеристик повітряного потоку за допомогою трубки Піто-Прандтля та рідинного мікроманометра.

Вивчення прецесії гіроскопа
  Мета лабораторної роботи: Ознайомлення з особливостями руху гіроскопа. Визначення кутової швидкості прецесії і моменту інерції гіроскопа. &nbs

Логарифмічна функція та її властивості.
  ab = c => log a c = b Основна логарифмічна тотожність: alog a N = N

Приклад №1.
I. Робоча формула, яка використовується для розрахунку прискорення сили тяжіння земного за періодом коливань математичного маятника, має такий вигляд:

Приклад№2.
І. Робоча формула, яка служить для визначення в’язкості рідини має такий вигляд:   , де

Деякі фізичні властивості деяких твердих тіл
Матеріал Густина , кг/м3 Модуль Юнга Е, Па Модуль зсуву

Довідкова таблиця деяких фізичних сталих та інших фізичних величин.
Величина Позначення Значення Прискорення вільного падіння g 9,80602 м/с2

Множники та приставки для утворення десяткових кратних і часткових одиниць та їх найменувань
Множник Приставка Множник Приставка Назва Позначення Назва Позначення

СПИСОК ВИКОРИСТАНОЇ ТА РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ
  1. Сборник описаний работ по механике и молекулярной физике / Составитель Богданова К.Н. - Харьков: Издательство Харьковского государственного университета им. А.М. Горького.- 1958.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги