Замена переменной в определенном интеграле. - раздел Философия, Функции двух и трех переменных как функции точки При Вычислении Определенных Интегралов С Использованием Формулы Ньютона-Лейбн...
При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нахождение приращения первообразной). Такой подход, использующий, в частности, формулы замены переменной и интегрирования по частям для определенного интеграла, обычно позволяет упростить запись решения.
ТЕОРЕМА. Пусть функция φ(t) имеет непрерывную производную на отрезке [α,β], а=φ(α), в=φ(β) и функция f(х) непрерывна в каждой точке х вида х=φ(t), где t [α,β].
Тогда справедливо следующее равенство:
Эта формула носит название формулы замены переменной в определенном интеграле.
Подобно тому, как это было в случае неопределенного интеграла, использование замены переменной позволяет упростить интеграл, приблизив его к табличному (табличным). При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования. Достаточно лишь найти пределы интегрирования α и β по новой переменной t как решение относительно переменной t уравнений φ(t)=а и φ(t)=в. На практике, выполняя замену переменной, часто начинают с того, что указывают выражение t=ψ(х) новой переменной через старую. В этом случае нахождение пределов интегрирования по переменной t упрощается: α=ψ(а), β=ψ(в).
Пример 19. Вычислить
Положим t=2-х2. Тогда dt=d(2-х2)=(2-х2)'dx=-2xdx и xdx=- dt. Если х=0, то t=2-02=2, и если х=1, то t=2-12=1. Следовательно:
Пример 20. Вычислить
Воспользуемся заменой переменной . Тогда и . Если х=0, то t=1 и, если х=5, то t=4. Выполняя замену, получим:
Пример 21. Вычислить
Положим t=ex. Тогда x=lnt, dx=dt/t и, если x=ln2, то t=2, если х=ln3, то t=3. Выполняя замену, получаем:
Геометрическое изображение функции двух переменных с помощью поверхностей и линий... Частные производные функции нескольких переменных геометрический смысл... Правила и таблица производных элементарных функций справедливы и применимы для любой переменной либо какой нибудь...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Замена переменной в определенном интеграле.
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Полный дифференциал функции нескольких переменных.
На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производныхпе
Частные производные высших порядков.
Рассмотрим функцию двух переменных n=2, . Предположим, что функция имеет частные производные
, ,
которые являются функциями двух переменных. Их называют частными произво
Решение.
На первом шаге, в соответствие с достаточным условием экстремума функции двух переменных, найдем точки, удовлетворяющие условию:
Частные производные первого порядка от
Метод замены переменной в неопределенном интеграле.
На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной
Метод интегрирования по частям.
И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, эк
Интегрирование рациональных дробей.
Рациональной дробью называется выражение вида , где , –многочлены степеней n и m соответственно.
Если , рациональная дробь называется правильной, в противном
Интегрирование иррациональных функций.
Вот и пробил час интегралов от корней, они вас заждались! С моей точки зрения интегрирование иррациональных функций следует изучать уже при некоторых знаниях и навыках решения неопр
Случай второй
Если– целое число, то необходимо провести замену, где– знаменатель дроби.
Спокойствие, только спокойствие, сейчас во всём разберемся.
Пример
Интегрирование тригонометрических функций.
На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все п
Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3)
В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовы
Теорема об интеграле с переменным верхним пределом.
Рассмотрим функцию y = f(x), интегрируемую на отрезке [а, b]. Если х на промежутке [a, b], то функция f(x) интегрируема также на любом отрезке [а, х]. Предположим, что х меняется на отрезке [а, b],
Вычисление площади плоских фигур в полярных координатах.
Любая точка в полярной системе координат задается полярным углом и соответствующим полярным радиусом . - это угол, отсчитываемый от полярной оси в положительном направлении (против часовой стрелки)
Площадь криволинейного сектора - вывод формулы.
Выведем формулу для вычисления площади криволинейного сектора.
Для этого нам понадобится известная из школьного курса геометрии формула площади кругового сектора радиуса R с внутрен
Замечание.
Так мы поступаем, если считаем функцию неотрицательной, в противном случае ориентируемся только на область определения и период функции.
Разберем на примерах.
Пример.
Объем тела вращения.
Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
Пример 1
Вычислить объем тела, полученного вращен
Интегралы с бесконечными пределами интегрирования.
Что значит вычислить несобственный интеграл? Вычислить несобственный интеграл – это значит, найти ЧИСЛО(точно так же, как в определенном интеграле), или доказать, что он ра
Если подынтегральной функции не существует в точке
Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего пред
Если подынтегральной функции не существует в точке
Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:
Здесь всё абсолютно так же, за исключением того, что предел
Интегралы от неограниченных функций.
Определение 1. Пусть функция f(x) определена и неограничена на полуинтервале [а, b), при этом она ограничена и интегрируема на любом отрезке [а, с], где а с Если существует конечный предел , то он
Признаки сходимости несобственных интегралов.
Установить условную сходимость несобственного интеграла по бесконечному промежутку при отсутствии абсолютной сходимости позволяют два следующих признака: признак сходимости Абеля:
Дифференциальные уравнения с однородными функциями.
На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменнымии лине
Линейные однородные уравнения n-го порядка, свойства их решений.
Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не п
Новости и инфо для студентов