рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Всегда смотрим и записываем, является ли подынтегральная функциянепрерывнойна интервале интегрирования.

Всегда смотрим и записываем, является ли подынтегральная функциянепрерывнойна интервале интегрирования. - раздел Философия, Функции двух и трех переменных как функции точки Пример 2 Вычислить Несобственный Интеграл Или Установить Его Расходи...

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд. Решаем с помощью формулы :

 

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что при (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Чистовое оформление примера должно выглядеть примерно так:



Подынтегральная функция непрерывна на

Рассмотрим более содержательные примеры.

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция непрерывна на .

Интеграл не так прост, особенно для чайника. Что делать, если интеграл кажется не самым простым или не сразу понятно как его решать? В этом случае целесообразно применить алгоритм, о котором я уже рассказал в статье Определенный интеграл. Примеры решений.

Сначала попытаемся найти первообразную функцию (неопределенный интеграл). Если нам не удастся этого сделать, то несобственный интеграл мы, естественно, тоже не решим.

 

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

 

Проведем замену:

 

 

Неопределенный интеграл найден, константу в данном случае добавлять не имеет смысла.

На черновике всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

 

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден правильно.

Теперь находим несобственный интеграл:

 

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница. Почему при ? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:



Подынтегральная функция непрерывна на .

А сейчас два примера для самостоятельного решения.

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата, более подробно с методом можно ознакомиться на уроке Интегрирование некоторых дробей.

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала. У кого какая математическая подготовка.

Полные решения и ответы в конце урока.

Примеры решений несобственных интегралов с бесконечным нижним пределом интегрирования можно посмотреть на странице Эффективные методы решения несобственных интегралов. Там же разобран случай, когда оба предела интегрирования бесконечны.

 

Несобственные интегралы от неограниченных функций

Иногда такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: . Но, в отличие от определенного интеграла, подынтегральная функция терпит бесконечный разрыв (не существует): 1) в точке , 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

– Конец работы –

Эта тема принадлежит разделу:

Функции двух и трех переменных как функции точки

Геометрическое изображение функции двух переменных с помощью поверхностей и линий... Частные производные функции нескольких переменных геометрический смысл... Правила и таблица производных элементарных функций справедливы и применимы для любой переменной либо какой нибудь...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Всегда смотрим и записываем, является ли подынтегральная функциянепрерывнойна интервале интегрирования.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предел функции. Непрерывность в точке и в области.
Определение 1.1. Переменная z (с областью изменения Z) называется функцией двух независимых переменных х,у в множестве М, если каждой паре

Предел и непрерывность функции нескольких переменных.
  Введем понятие δ-окрестности точки М0 (х0 , у0) на плоскости Оху как круга радиуса δ с центром в дан

Полный дифференциал функции нескольких переменных.
  На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производныхпе

Частные производные высших порядков.
Рассмотрим функцию двух переменных n=2, . Предположим, что функция имеет частные производные , , которые являются функциями двух переменных. Их называют частными произво

Достаточные условия экстремума функции двух переменных.
    Говорят, что функция имеет максимум в точке , т.е. при , если для всех точек , достаточно близких к точке и отличных от неё. Говорят,

Решение.
На первом шаге, в соответствие с достаточным условием экстремума функции двух переменных, найдем точки, удовлетворяющие условию:   Частные производные первого порядка от

Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
Пусть функция непрерывна в замкнутой ограниченной области G, дифференцируема внутри этой области. Чтобы найти наибольшее и наименьшее значения функции в этой области, нужно: 1)най

Алгоритм исследования функции двух переменных на условный экстремум
1. Составить функцию Лагранжа 2. Решить систему   3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить люб

Метод замены переменной в неопределенном интеграле.
  На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной

Метод интегрирования по частям.
  И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, эк

В интегралах рассматриваемого типа завсегда обозначается логарифм.
Технически оформление решения реализуется следующим образом, в столбик записываем:   То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтеграль

Интегрирование рациональных дробей.
Рациональной дробью называется выражение вида , где , –многочлены степеней n и m соответственно. Если , рациональная дробь называется правильной, в противном

Интегрирование иррациональных функций.
  Вот и пробил час интегралов от корней, они вас заждались! С моей точки зрения интегрирование иррациональных функций следует изучать уже при некоторых знаниях и навыках решения неопр

Случай второй
Если– целое число, то необходимо провести замену, где– знаменатель дроби. Спокойствие, только спокойствие, сейчас во всём разберемся. Пример

Интегрирование тригонометрических функций.
  На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все п

Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3) В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовы

Теорема об интеграле с переменным верхним пределом.
Рассмотрим функцию y = f(x), интегрируемую на отрезке [а, b]. Если х на промежутке [a, b], то функция f(x) интегрируема также на любом отрезке [а, х]. Предположим, что х меняется на отрезке [а, b],

Замена переменной в определенном интеграле.
При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нах

Интегрирование по частям при вычислении определенного интеграла.
Метод интегрирования по частям в определенном интеграле Здесь новизны еще меньше. Все выкладки статьи Интегрирование по частям в неопределенном ин

Вычисление площади плоских фигур в полярных координатах.
Любая точка в полярной системе координат задается полярным углом и соответствующим полярным радиусом . - это угол, отсчитываемый от полярной оси в положительном направлении (против часовой стрелки)

Площадь криволинейного сектора - вывод формулы.
Выведем формулу для вычисления площади криволинейного сектора. Для этого нам понадобится известная из школьного курса геометрии формула площади кругового сектора радиуса R с внутрен

Замечание.
Так мы поступаем, если считаем функцию неотрицательной, в противном случае ориентируемся только на область определения и период функции. Разберем на примерах. Пример.

Вычисление объема тела по площадям параллельных сечений.
Рассмотрим тело D, ограниченное плоскостями х = а и х = b (рис. 247).   Через S(x) обозначим площадь сечения тела D плоскостью, проходящей

Объем тела вращения.
Вычисление объема тела, образованного вращением плоской фигуры вокруг оси Пример 1 Вычислить объем тела, полученного вращен

Интегралы с бесконечными пределами интегрирования.
Что значит вычислить несобственный интеграл? Вычислить несобственный интеграл – это значит, найти ЧИСЛО(точно так же, как в определенном интеграле), или доказать, что он ра

Если подынтегральной функции не существует в точке
Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего пред

Если подынтегральной функции не существует в точке
Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:   Здесь всё абсолютно так же, за исключением того, что предел

Интегралы от неограниченных функций.
Определение 1. Пусть функция f(x) определена и неограничена на полуинтервале [а, b), при этом она ограничена и интегрируема на любом отрезке [а, с], где а с Если существует конечный предел , то он

Признаки сходимости несобственных интегралов.
Установить условную сходимость несобственного интеграла по бесконечному промежутку при отсутствии абсолютной сходимости позволяют два следующих признака: признак сходимости Абеля:

Дифференциальные уравнения с однородными функциями.
На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменнымии лине

В 19-ти случаях из 20-ти решение однородного уравнения записывают в виде общего интеграла.
Ответ: общий интеграл: Почему почти всегда ответ однородного уравнения дается в виде общего интеграла? В большинстве случаев невозможно выразить «игрек» в явном виде (полу

Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные

Дифференциальные уравнения высших порядков, допускающие понижение порядка.
Кроме распространенных однородных и неоднородных уравнений второго порядка и высших порядков с постоянными коэффициентами, рядовому студенту часто приходится сталк

Линейные однородные уравнения n-го порядка, свойства их решений.
Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не п

Теорема о структуре общего решения линейного однородного дифференциального уравнения.
Теорема 4. Если - линейно независимые на решения линейного однородного дифференциального уравнения -го порядка с непрерывными коэффициентами , то функция , (9) где - произвольные

Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
Рассмотрим линейное неоднородное дифференциальное уравнение y(n) + an-1(x)y(n - 1)

Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами В теории и практике различают два типа таких уравне

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги