рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Объем тела вращения.

Объем тела вращения. - раздел Философия, Функции двух и трех переменных как функции точки Вычисление Объема Тела, Образованного Вращением ...

Вычисление объема тела, образованного вращением
плоской фигуры вокруг оси

Пример 1

Вычислить объем тела, полученного вращением фигуры, ограниченной линиями , вокруг оси .

Решение: Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры. То есть, на плоскости необходимо построить фигуру, ограниченную линиями , , при этом не забываем, что уравнение задаёт ось . Как рациональнее и быстрее выполнить чертёж, можно узнать на страницах Графики и свойства Элементарных функцийи Определенный интеграл. Как вычислить площадь фигуры. Это китайское напоминание, и на данном моменте я больше не останавливаюсь.

Чертёж здесь довольно прост:

 

Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси . В результате вращения получается такая немного яйцевидная летающая тарелка, которая симметрична относительно оси . На самом деле у тела есть математическое название, но в справочнике что-то лень смотреть, поэтому едем дальше.

Как вычислить объем тела вращения?

Объем тела вращения можно вычислить по формуле:

 

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы сверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – функция в формуле возводится в квадрат: , таким образом объем тела вращения всегда неотрицателен, что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ:

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями , ,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , , и

Решение:Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение задает ось :

 

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел.

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через .

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через .

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ:

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (не тот) в книге Занимательная геометрия. Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, написанная им еще в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями , , где .

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, фактически даны готовые пределы интегрирования. Правильно начертите графики тригонометрических функций, напомню материал урока огеометрических преобразованиях графиков: если аргумент делится на два: , то графики растягиваются по оси в два раза. Желательно найти хотя бы 3-4 точки по тригонометрическим таблицам, чтобы точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

 

Вычисление объема тела, образованного вращением
плоской фигуры вокруг оси

Второй параграф будет еще интереснее, чем первый. Задание на вычисление объема тела вращения вокруг оси ординат – тоже достаточно частый гость в контрольных работах. Попутно будет рассмотрена задача о нахождении площади фигуры вторым способом – интегрированием по оси , это позволит вам не только улучшить свои навыки, но и научит находить наиболее выгодный путь решения. В этом есть и практический жизненный смысл! Как с улыбкой вспоминала мой преподаватель по методике преподавания математики, многие выпускники благодарили её словами: «Нам очень помог Ваш предмет, теперь мы эффективные менеджеры и оптимально руководим персоналом». Пользуясь случаем, я тоже выражаю ей свою большую благодарность, тем более, что использую полученные знания по прямому назначению =).

Рекомендую для прочтения всем, даже полным чайникам. Более того, усвоенный материал второго параграфа окажет неоценимую помощь при вычислении двойных интегралов.

Пример 5

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.
2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначалаобязательно прочитайте первый!

Решение: Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

 

Легко заметить, что функция задает верхнюю ветку параболы, а функция – нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом, который рассматривался на уроке Определенный интеграл. Как вычислить площадь фигуры. Причем, площадь фигуры находится как сумма площадей:
– на отрезке ;
– на отрезке .

Поэтому:

Чем в данном случае плох обычный путь решения? Во-первых, получилось два интеграла. Во-вторых, под интегралами корни, а корни в интегралах – не подарок, к тому же можно запутаться в подстановке пределов интегрирования. На самом деле, интегралы, конечно, не убийственные, но на практике всё бывает значительно печальнее, просто я подобрал для задачи функции «получше».

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

Для самопроверки рекомендую устно или на черновике подставить координаты 2-3-х точек параболы в уравнение , они обязательно должны удовлетворять данному уравнению.

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание: Пределы интегрирования по оси следует расставлять строго снизу вверх!

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно – почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ:

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

 

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.

Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

 

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ:

Однако нехилая бабочка.

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 6

Дана плоская фигура, ограниченная линиями , и осью .

1) Перейти к обратным функциям и найти площадь плоской фигуры, ограниченной данными линиями, интегрированием по переменной .
2) Вычислить объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Это пример для самостоятельного решения. Желающие также могут найти площадь фигуры «обычным» способом, выполнив тем самым проверку пункта 1). А вот если, повторюсь, будете вращать плоскую фигуру вокруг оси , то получится совершенно другое тело вращения с другим объемом, кстати, правильный ответ (тоже для любителей порешать).

Полное же решение двух предложенных пунктов задания в конце урока.

Да, и не забывайте наклонять голову направо, чтобы разобраться в телах вращения и в пределах интегрирования!

Хотел, было уже, закончить статью, но сегодня принесли интересный пример как раз на нахождение объема тела вращения вокруг оси ординат. Свежачок:

Пример 7

Вычислить объем тела, образованного вращением вокруг оси фигуры, ограниченной кривыми и .

Решение: Выполним чертеж:

Попутно знакомимся с графиками некоторых других функций. Такой вот интересный график чётной функции ….

Для цели нахождения объема тела вращения достаточно использовать правую половину фигуры, которую я заштриховал синим цветом. Обе функции являются четными, их графики симметричны относительно оси , симметрична и наша фигура. Таким образом, заштрихованная правая часть, вращаясь вокруг оси , непременно совпадёт с левой нештрихованной частью.

Перейдем к обратным функциям, то есть, выразим «иксы» через «игреки»:

Обратите внимание, что правой ветке параболы соответствует обратная функция . Левой неиспользуемой ветке параболы соответствует обратная функция . В таких случаях нередко возникают сомнения, какую же функцию выбрать? Сомнения легко, развеиваются, возьмите любую точку правой ветки и подставьте ее координаты в функцию . Координаты подошли, значит, функция задает именно правую ветку, а не левую.

К слову, та же история и с функций . Чайнику, не всегда бывает сразу понятно, какую обратную функцию выбрать: или . В действительности я и сам всегда страхуюсь, подставляя в найденную обратную функцию пару точек графика.

Теперь наклоняем голову вправо и замечаем следующую вещь:

– на отрезке над осью расположен график функции ;
– на отрезке над осью расположен график функции ;

Логично предположить, что объем тела вращения нужно искать уже как сумму объемов тел вращений!

Используем формулу:

В данном случае:

Ответ:

В задаче нахождения площади фигуры суммирование площадей используется часто, а суммирование объемов тел вращения, видимо, редкость, раз такая разновидность чуть было не выпала из моего поля зрения. Все-таки хорошо, что своевременно подвернулся рассмотренный пример – удалось вытащить немало полезного.

Успешной раскрутки фигур!

Пример 2: Решение: Выполним чертеж:

Объем тела вращения:

Ответ:

Пример 4: Решение:Выполним чертеж:

Объем тела вращения вычислим как разность объемов при помощи формулы:

В данном случае:

Ответ:
Примечание: обратите внимание на использование свойства линейности интеграла – в данном случае при интегрировании выгодно превратить два интеграла в один (это можно сделать, поскольку константы перед интегралами и пределы интегрирования одинаковы), а затем использовать формулу косинуса двойного угла.

Пример 6: Решение:
1) Выполним чертёж:

Перейдем к обратной функции:

На отрезке , поэтому:

Ответ:

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .
Объем тела вращения найдем как разность объемов тел вращения при помощи формулы :

Ответ:

– Конец работы –

Эта тема принадлежит разделу:

Функции двух и трех переменных как функции точки

Геометрическое изображение функции двух переменных с помощью поверхностей и линий... Частные производные функции нескольких переменных геометрический смысл... Правила и таблица производных элементарных функций справедливы и применимы для любой переменной либо какой нибудь...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Объем тела вращения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предел функции. Непрерывность в точке и в области.
Определение 1.1. Переменная z (с областью изменения Z) называется функцией двух независимых переменных х,у в множестве М, если каждой паре

Предел и непрерывность функции нескольких переменных.
  Введем понятие δ-окрестности точки М0 (х0 , у0) на плоскости Оху как круга радиуса δ с центром в дан

Полный дифференциал функции нескольких переменных.
  На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производныхпе

Частные производные высших порядков.
Рассмотрим функцию двух переменных n=2, . Предположим, что функция имеет частные производные , , которые являются функциями двух переменных. Их называют частными произво

Достаточные условия экстремума функции двух переменных.
    Говорят, что функция имеет максимум в точке , т.е. при , если для всех точек , достаточно близких к точке и отличных от неё. Говорят,

Решение.
На первом шаге, в соответствие с достаточным условием экстремума функции двух переменных, найдем точки, удовлетворяющие условию:   Частные производные первого порядка от

Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
Пусть функция непрерывна в замкнутой ограниченной области G, дифференцируема внутри этой области. Чтобы найти наибольшее и наименьшее значения функции в этой области, нужно: 1)най

Алгоритм исследования функции двух переменных на условный экстремум
1. Составить функцию Лагранжа 2. Решить систему   3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить люб

Метод замены переменной в неопределенном интеграле.
  На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной

Метод интегрирования по частям.
  И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, эк

В интегралах рассматриваемого типа завсегда обозначается логарифм.
Технически оформление решения реализуется следующим образом, в столбик записываем:   То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтеграль

Интегрирование рациональных дробей.
Рациональной дробью называется выражение вида , где , –многочлены степеней n и m соответственно. Если , рациональная дробь называется правильной, в противном

Интегрирование иррациональных функций.
  Вот и пробил час интегралов от корней, они вас заждались! С моей точки зрения интегрирование иррациональных функций следует изучать уже при некоторых знаниях и навыках решения неопр

Случай второй
Если– целое число, то необходимо провести замену, где– знаменатель дроби. Спокойствие, только спокойствие, сейчас во всём разберемся. Пример

Интегрирование тригонометрических функций.
  На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все п

Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3) В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовы

Теорема об интеграле с переменным верхним пределом.
Рассмотрим функцию y = f(x), интегрируемую на отрезке [а, b]. Если х на промежутке [a, b], то функция f(x) интегрируема также на любом отрезке [а, х]. Предположим, что х меняется на отрезке [а, b],

Замена переменной в определенном интеграле.
При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нах

Интегрирование по частям при вычислении определенного интеграла.
Метод интегрирования по частям в определенном интеграле Здесь новизны еще меньше. Все выкладки статьи Интегрирование по частям в неопределенном ин

Вычисление площади плоских фигур в полярных координатах.
Любая точка в полярной системе координат задается полярным углом и соответствующим полярным радиусом . - это угол, отсчитываемый от полярной оси в положительном направлении (против часовой стрелки)

Площадь криволинейного сектора - вывод формулы.
Выведем формулу для вычисления площади криволинейного сектора. Для этого нам понадобится известная из школьного курса геометрии формула площади кругового сектора радиуса R с внутрен

Замечание.
Так мы поступаем, если считаем функцию неотрицательной, в противном случае ориентируемся только на область определения и период функции. Разберем на примерах. Пример.

Вычисление объема тела по площадям параллельных сечений.
Рассмотрим тело D, ограниченное плоскостями х = а и х = b (рис. 247).   Через S(x) обозначим площадь сечения тела D плоскостью, проходящей

Интегралы с бесконечными пределами интегрирования.
Что значит вычислить несобственный интеграл? Вычислить несобственный интеграл – это значит, найти ЧИСЛО(точно так же, как в определенном интеграле), или доказать, что он ра

Всегда смотрим и записываем, является ли подынтегральная функциянепрерывнойна интервале интегрирования.
Пример 2 Вычислить несобственный интеграл или установить его расходимость. Выполним чертеж: Во-первых, замечаем следующее: подынтегральная функция непреры

Если подынтегральной функции не существует в точке
Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего пред

Если подынтегральной функции не существует в точке
Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:   Здесь всё абсолютно так же, за исключением того, что предел

Интегралы от неограниченных функций.
Определение 1. Пусть функция f(x) определена и неограничена на полуинтервале [а, b), при этом она ограничена и интегрируема на любом отрезке [а, с], где а с Если существует конечный предел , то он

Признаки сходимости несобственных интегралов.
Установить условную сходимость несобственного интеграла по бесконечному промежутку при отсутствии абсолютной сходимости позволяют два следующих признака: признак сходимости Абеля:

Дифференциальные уравнения с однородными функциями.
На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменнымии лине

В 19-ти случаях из 20-ти решение однородного уравнения записывают в виде общего интеграла.
Ответ: общий интеграл: Почему почти всегда ответ однородного уравнения дается в виде общего интеграла? В большинстве случаев невозможно выразить «игрек» в явном виде (полу

Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные

Дифференциальные уравнения высших порядков, допускающие понижение порядка.
Кроме распространенных однородных и неоднородных уравнений второго порядка и высших порядков с постоянными коэффициентами, рядовому студенту часто приходится сталк

Линейные однородные уравнения n-го порядка, свойства их решений.
Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не п

Теорема о структуре общего решения линейного однородного дифференциального уравнения.
Теорема 4. Если - линейно независимые на решения линейного однородного дифференциального уравнения -го порядка с непрерывными коэффициентами , то функция , (9) где - произвольные

Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
Рассмотрим линейное неоднородное дифференциальное уравнение y(n) + an-1(x)y(n - 1)

Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами В теории и практике различают два типа таких уравне

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги