Если подынтегральной функции не существует в точке
Если подынтегральной функции не существует в точке - раздел Философия, Функции двух и трех переменных как функции точки Бесконечная Криволинейная Трапеция Для Такого Несобственного Интеграла Принци...
Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:
Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значениюслева. По оси мы должны бесконечно близко приблизиться к точке разрыва слева.
Пример 9
Вычислить несобственный интеграл или установить его расходимость.
Подынтегральная функция терпит бесконечный разрыв в точке (устно проверяем, что с другим пределом интегрирования всё нормально!).
Для разнообразия я решу этот интеграл сразу – методом подведения функции под знак дифференциала. Те, кому трудно, могут сначала найти неопределенный интеграл по уже рассмотренной схеме.
Добавка обозначает, что предел у нас левосторонний, и к точке мы приближаемся по оси слева.
Разбираемся, почему дробь (это лучше делать устно или на черновике). Подставляем под корень предельное значение : и тогда
Окончательно:
Несобственный интеграл расходится.
Знак минус обозначает, что соответствующая криволинейная трапеция расположена под осью . Будьте очень внимательны в знаках. Да, конечно, несобственный интеграл расходится, но и – это разные вещи, разные жанры, и если Вы недосмотрите за знаками, то, строго говоря, допустите серьезную ошибку.
И заключительные два примера для самостоятельного рассмотрения:
Пример 10
Вычислить несобственный интеграл или установить его расходимость.
Пример 11
Вычислить несобственный интеграл или установить его расходимость.
Разбор ситуации, когда оба предела интегрирования «плохие», или точка разрыва содержится прямо на отрезке интегрирования, можно найти в статье Эффективные методы решения несобственных интегралов.
Пример 4: Решение: Подынтегральная функция непрерывна на . Пример 5: Решение: Подынтегральная функция непрерывна на . Несобственный интеграл расходится.
Пример 7: Решение: Подынтегральная функция терпит бесконечный разрыв в точке Несобственный интеграл расходится.
Примечание: с пределом выражения можно разобраться следующим образом: вместо подставляем :
Пример 8: Решение: Подынтегральная функция терпит бесконечный разрыв в точке
Примечание: Разбираемся в пределе выражения . Если , то (см. график логарифмической функции!), тогда: . Именно эти соображения и помечаются как
Пример 10: Решение: Подынтегральная функция терпит бесконечный разрыв в точке
Пример 11: Решение: Подынтегральная функция терпит бесконечный разрыв в точке Несобственный интеграл расходится
Примечание: Разбираемся в пределе выражения . Если , то , и тогда . Будьте очень внимательны в знаках!
Геометрическое изображение функции двух переменных с помощью поверхностей и линий... Частные производные функции нескольких переменных геометрический смысл... Правила и таблица производных элементарных функций справедливы и применимы для любой переменной либо какой нибудь...
Полный дифференциал функции нескольких переменных.
На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производныхпе
Частные производные высших порядков.
Рассмотрим функцию двух переменных n=2, . Предположим, что функция имеет частные производные
, ,
которые являются функциями двух переменных. Их называют частными произво
Решение.
На первом шаге, в соответствие с достаточным условием экстремума функции двух переменных, найдем точки, удовлетворяющие условию:
Частные производные первого порядка от
Метод замены переменной в неопределенном интеграле.
На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной
Метод интегрирования по частям.
И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, эк
Интегрирование рациональных дробей.
Рациональной дробью называется выражение вида , где , –многочлены степеней n и m соответственно.
Если , рациональная дробь называется правильной, в противном
Интегрирование иррациональных функций.
Вот и пробил час интегралов от корней, они вас заждались! С моей точки зрения интегрирование иррациональных функций следует изучать уже при некоторых знаниях и навыках решения неопр
Случай второй
Если– целое число, то необходимо провести замену, где– знаменатель дроби.
Спокойствие, только спокойствие, сейчас во всём разберемся.
Пример
Интегрирование тригонометрических функций.
На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все п
Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3)
В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовы
Теорема об интеграле с переменным верхним пределом.
Рассмотрим функцию y = f(x), интегрируемую на отрезке [а, b]. Если х на промежутке [a, b], то функция f(x) интегрируема также на любом отрезке [а, х]. Предположим, что х меняется на отрезке [а, b],
Замена переменной в определенном интеграле.
При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нах
Вычисление площади плоских фигур в полярных координатах.
Любая точка в полярной системе координат задается полярным углом и соответствующим полярным радиусом . - это угол, отсчитываемый от полярной оси в положительном направлении (против часовой стрелки)
Площадь криволинейного сектора - вывод формулы.
Выведем формулу для вычисления площади криволинейного сектора.
Для этого нам понадобится известная из школьного курса геометрии формула площади кругового сектора радиуса R с внутрен
Замечание.
Так мы поступаем, если считаем функцию неотрицательной, в противном случае ориентируемся только на область определения и период функции.
Разберем на примерах.
Пример.
Объем тела вращения.
Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
Пример 1
Вычислить объем тела, полученного вращен
Интегралы с бесконечными пределами интегрирования.
Что значит вычислить несобственный интеграл? Вычислить несобственный интеграл – это значит, найти ЧИСЛО(точно так же, как в определенном интеграле), или доказать, что он ра
Если подынтегральной функции не существует в точке
Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего пред
Интегралы от неограниченных функций.
Определение 1. Пусть функция f(x) определена и неограничена на полуинтервале [а, b), при этом она ограничена и интегрируема на любом отрезке [а, с], где а с Если существует конечный предел , то он
Признаки сходимости несобственных интегралов.
Установить условную сходимость несобственного интеграла по бесконечному промежутку при отсутствии абсолютной сходимости позволяют два следующих признака: признак сходимости Абеля:
Дифференциальные уравнения с однородными функциями.
На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменнымии лине
Линейные однородные уравнения n-го порядка, свойства их решений.
Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не п
Новости и инфо для студентов