Электрон-фононное рассеяние. - Лекция, раздел Философия, ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ Расчеты Механизмов Электрон-Фононного Рассеяния В Низкоразмерных Полупроводн...
Расчеты механизмов электрон-фононного рассеяния в низкоразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводниках, например, такое рассеяние является преобладающим при температурах выше 50 K и т.п. Однако существует и значительное различие по сравнению с трехмерными структурами, обусловленное тем, что при очень малой ширине квантовых ям а возрастает роль акустических фононов. Это различие обусловлено отсутствием инвариантности при движении в перпендикулярном направлении, например, для двумерных квантовых ям, где неопределенность в перпендикулярной компоненте момента должно быть ³h/а. Поэтому значение момента акустических фононов в очень узких квантовых ямах не сохраняется, в отличие от объемных систем, где они обладают хорошо определенным импульсом. Возрастание неопределенности в значении импульса приводит к увеличению числа разнообразных механизмов электрон-фононного рассеяния, а затем и к возрастанию роли таких процессов в низкоразмерных полупроводниках.
Процессы рассеяния на оптических фононах в низкоразмерных структурах также существенно отличаются от аналогичных процессов в трехмерных полупроводниках, особенно в случае сильно полярных материалов типа соединения AIIIВV. Взаимодействие проявляется с особой силой в квантовых ямах, где нет перекрытия энергетических зон оптических фононов полупроводниковой ямы (например, GаАs) и полупроводникового барьера (например, АlGaAs). В таких системах вклад в фононное рассеяние локальных оптических мод и мод, связанных с поверхностями раздела, становится гораздо более существенным, чем вклад от обычных объемных оптических фононов.
2. Рассеяние на примесных атомах.
При низких температурах в полупроводниках с пониженной размерностью основной вклад в процессы рассеяния (как и в объемных системах) возникает из-за рассеяния на ионизированных или нейтральных примесных атомах. Основное различие между процессами рассеяния в дву- и трехмерных системах возникает из-за наличия продольного переноса, при котором рассеивающие атомы примеси часто пространственно разделены с двумерной плоскостью, в которой движутся электроны. В модулированно-легированных полупроводниках (рис. 5.4, 5.6) заряженные доноры располагаются в барьере АlGаАs, а движение самих электронов происходит в яме GаАs, параллельно поверхности раздела полупроводников. Аналогично в МОП-структуре (рис. 5.1) электроны двигаются внутри инверсного канала, отделенного от атомов примеси, расположенных в тонком слое подзатворного окисла.
Для расчета рассеяния на атомах примесей в квантовой гетероструктуре полевого МОП-транзистора необходимо использовать некоторые упрощающие предположения, например, использовать представление о так называемом d-легировании, при котором предполагается, что все ионизированные примесные атомы лежат в двумерной области (плоскости) на расстоянии d от электронного канала, а энергия всех электронов, участвующих в процессах рассеяния, близка к значению уровня Ферми. Далее следует предположить, что концентрация примесных атомов не очень велика, т. е. все заряженные примеси взаимодействуют с носителями независимо друг от друга. Исходя из этих предположений, можно легко показать, что подвижность носителей возрастает как ~d3. С другой стороны, при очень больших значениях d концентрация электронов в канале должна стремительно уменьшаться из-за уменьшения напряженности электрического поля, что приводит к уменьшению крутизны полевого МОП-транзистора. Поэтому для каждой такой структуры должно существовать некое оптимальное значение d.
ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ... План лекции... Фундаментальные явления...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Электрон-фононное рассеяние.
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Фундаментальные явления.
Поведение подвижных носителей заряда (электронов и дырок) в наноразмерных структурах определяют три группы фундаментальных явлений: квантовое ограничение, баллистический транспорт и квантовая интер
Гетеропереходы первого и второго типов.
Рассмотрим одиночный гетеропереход между двумя полупроводниками A и B, имеющими в общем случае различную ширину запрещенной зоны
Энергетическая диаграмма одномерной сверхрешётки
Полупроводниковые квантово-размерные структуры на основе гетеропереходов принято различать по числу направлений, вдоль которых происходит ограничение движения носителей заряда (электронов или дырок
Рассеяние частиц на потенциальной ступеньке.
Проведем анализ системы, в которой частицы, испускаемые источником, удаленным на большое расстояние, рассеиваются на той или иной преграде, уходя после этого в бесконечность.
Простейшей м
Потенциальный барьер конечной ширины.
В реальной физической ситуации мы всегда имеем дело с барьером конечной ширины. Найдем коэффициенты отражения и прохождения при движении частицы через прямоугольный потенциальный барьер ширины
Частица в прямоугольной потенциальной яме.
При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.
Особенности движения частиц над потенциальной ямой.
Мы рассмотрели случай, когда полная энергия частицы Е меньше высоты стенок потенциальной ямы (финитное движение). Здесь размерный эффект проявляется в квантовании энергии и волнового вектора
Прохождение частицы через многобарьерные квантовые структуры.
При исследовании поведения частицы (электрона) в системах, содержащих изолированные КЯ и потенциальные барьеры, установлено, что при туннелировании через одиночный потенциальный барьер коэффициен
Межподзонное рассеяние.
Рассмотрим двумерную электронную систему, локализованную в потенциальной яме, входящей в состав модулированно-легированной гетероструктуры или полевого МОП-транзистора. Очевидно, что при достаточн
Экспериментальные данные по продольному переносу
На рис. 6.2 представлены данные, иллюстрирующие прогресс, достигнутый в области повышения подвижности электронов при продольном переносе за последние двенадцать лет в наноструктурах на основе GаАs,
Продольный перенос горячих электронов
В некоторых типах полевых транзисторов и наноструктур кинетическая энергия электронов, ускоряемых электрическим полем, может становиться очень высокой и значительно превышать равновесную тепловую
Поперечный перенос в наноструктурах в электрическом поле.
В этом разделе мы рассмотрим движение носителей в направлении, перпендикулярном плоскостям потенциальных барьеров, разделяющих квантовые гетероструктуры. Такой вид переноса часто ассоциируется с
Резонансное туннелирование
Резонансное туннелирование (РТ) сквозь двойной потенциальный барьер является одним из явлений вертикального квантового переноса, уже нашедший широкое практическое применение в создании диодов и тр
Влияние поперечных электрических полей на свойства сверхрешеток
Ранее уже указывалось, что электронные состояния в сверхрешетках образуют электронные зоны или подзоны, которые гораздо уже, чем соответствующие зоны в обычных кристаллах. Малая ширина зон и энерг
Квантовый перенос в наноструктурах
Рассмотрим далее процессы квантового переноса, происходящие при протекании через наноструктуры тока от присоединенных к ним внешних источников. Такие процессы можно также назвать мезоскопическим
Квантовая проводимость. Формула Ландауэра.
Для самого простого описания эффектов квантовой проводимости удобно рассмотреть одномерную мезоскопическую полупроводниковую структуру, типа квантовой проволоки. Если такая проволока является дос
Новости и инфо для студентов