рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Движение частицы в сферически симметричной прямоугольной потенциальной яме.

Движение частицы в сферически симметричной прямоугольной потенциальной яме. - Лекция, раздел Философия, ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ Развитие Нанотехнологии Инициировало Широкое Исследование Новых Классов Наноо...

Развитие нанотехнологии инициировало широкое исследование новых классов нанообъектов, в частности квантовых точек, в кото­рых осуществляется пространственное ограничение носителей за­ряда в трех измерениях. Квантовые точки как квазинульмерные системы важны не только как возможная элементная база для наноэлектроники, но и как модельные объекты для фундаментальных исследований. Электронный спектр изолированных КТ представ­ляет собой набор дискретных уровней размерного квантования, и в этом смысле они могут рассматриваться как гигантские искусст­венные атомы с контролируемо изменяемыми параметрами, таки­ми как глубина и характер удерживающего потенциала, число час­тиц и характерные размеры области их локализации.

Вид удерживающего потенциала определяется способом полу­чения КТ. Для его представления наиболее часто используются модель «жестких стенок» и модель параболического удержива­ющего потенциала.

Соответствующая ортонормированная система одночастичных волновых функций имеет вид

(1.7.12)

где m-магнитное квантовое число; -присоединенные функции Лежандра первого рода; Г(x) - гамма-функция Эйлера; - обобщенный многочлен Лагерра; r,Θ,φ- сферические ко­ординаты от центра ямы; α - параметр крутизны удерживающего потенциала U(r,Θ,φ)=αr2. Так как каждое значение может быть получено несколь­кими комбинациями значений n и l, стационарные состояния сферического осциллятора, начиная с третьего, оказываются g(N)-кратно вырожденными, причем

g(N)=0,5(N+1)(N+2) (1.7.13)

Например, уровень энергии будет шестикратно вы­рожден. В одном из этих шести состояний угловой момент (а следо­вательно, и орбитальное квантовое число l) равен нулю (s-состояние), а остальные пять состояний относятся к d-состояниям, которые различаются проекциями углового момента.

Необходимо отметить, что в случае сферического осциллятора вырождение каждого из p-, d-, f - и т.д. состояний является ре­зультатом сферической симметрии потенциального поля, а вырож­дение, благодаря которому s-состояние имеет энергию, совпадаю­щую с энергией d-состояния (при N = 2), является «случайным». Оно обусловлено не симметрией задачи, а квадратичной зависимо­стью потенциальной энергии от радиуса. Если зависимость потен­циальной энергии от радиуса будет отличаться от квадратичной (т.е. от U(r,Θ,φ)=αr2), например, членом βr2k, то вырождение, связанное со сферической симметрией, сохранится, а случайное - будет отсутствовать.

 

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ

ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ... План лекции... Фундаментальные явления...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Движение частицы в сферически симметричной прямоугольной потенциальной яме.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Фундаментальные явления.
Поведение подвижных носителей заряда (электронов и дырок) в наноразмерных структурах определяют три группы фундаментальных явлений: квантовое ограничение, баллистический транспорт и квантовая интер

Гетеропереходы первого и второго типов.
Рассмотрим одиночный гетеропереход между двумя полупроводни­ками A и B, имеющими в общем случае различную ширину запре­щенной зоны

Энергетическая диаграмма одномерной сверхрешётки
Полупроводниковые квантово-размерные структуры на основе гетеропереходов принято различать по числу направлений, вдоль которых происходит ограничение движения носителей заряда (электронов или дырок

Рассеяние частиц на потенциальной ступеньке.
Проведем анализ системы, в которой частицы, испускаемые ис­точником, удаленным на большое расстояние, рассеиваются на той или иной преграде, уходя после этого в бесконечность. Простейшей м

Потенциальный барьер конечной ширины.
В реальной физической ситуации мы всегда имеем дело с барь­ером конечной ширины. Найдем коэффициенты отражения и про­хождения при движении частицы через прямоугольный потенци­альный барьер ширины

Интерференционные эффекты при надбарьерном пролете частиц.
Рассмотрим особенности прохождения частицы над прямо­угольным потенциальным барьером (рис. 1.2, а), когда E>U1, и E>U2. Сразу отметим, что надба

Частица в прямоугольной потенциальной яме.
При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.

Особенности движения частиц над потенциальной ямой.
Мы рассмотрели случай, когда полная энергия частицы Е меньше высоты стенок потенциальной ямы (финитное движение). Здесь размерный эффект проявляется в квантовании энергии и волнового вектора

Энергетические состояния в прямоугольной квантовой яме с бесконечными стенками и дополнительным провалом.
Возможность получения слоев с произвольным профилем из­менения состава позволила для улучшения характеристик прибо­ров использовать структуры с КЯ сложной формы. Так, для созда­ния нового поколения

Энергетическая диаграмма квантовой ямы с конечными стенками и дополнительным провалом.
В реальности мы имеем дело с потенциальными ямами, стенки которых имеют конечную высоту (см. рис. 1.9, а). Рассмотрим влияние конечной высоты стенок на разрешенные значения энер­гии основног

Структура со сдвоенной квантовой ямой. Энергетический спектр частицы в системе с δ-образным барьером.
Выше мы рассмотрели поведение частиц в системах, содержа­щих изолированные КЯ и потенциальные барьеры. Как уже отме­чалось, накопленный к настоящему времени опыт и достижения техники для выращивани

Прохождение частицы через многобарьерные квантовые структуры.
При исследовании поведения частицы (электрона) в системах, содержащих изолированные КЯ и потенциальные барьеры, уста­новлено, что при туннелировании через одиночный потенциаль­ный барьер коэффициен

Электрон-фононное рассеяние.
Расчеты механизмов электрон-фононного рассеяния в низ­коразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводни­ках, например, такое рассеяни

Межподзонное рассеяние.
Рассмотрим двумерную электронную систему, локализован­ную в потенциальной яме, входящей в состав модулированно-легированной гетероструктуры или полевого МОП-транзистора. Очевидно, что при достаточн

Экспериментальные данные по продольному переносу
На рис. 6.2 представлены данные, иллюстрирующие прогресс, достигнутый в области повышения подвижности электронов при продольном переносе за последние двенадцать лет в наноструктурах на основе GаАs,

Продольный перенос горячих электронов
В некоторых типах полевых транзисторов и нано­структур кинетическая энергия электронов, ускоряемых элек­трическим полем, может становиться очень высокой и значительно превышать равновесную тепловую

Поперечный перенос в наноструктурах в электрическом поле.
В этом разделе мы рассмотрим движение носителей в направле­нии, перпендикулярном плоскостям потенциальных барьеров, разделяющих квантовые гетероструктуры. Такой вид перено­са часто ассоциируется с

Резонансное туннелирование
Резонансное туннелирование (РТ) сквозь двойной потенци­альный барьер является одним из явлений вертикального квантового переноса, уже нашедший широкое практическое применение в создании диодов и тр

Влияние поперечных электрических полей на свойства сверхрешеток
Ранее уже указывалось, что электронные состояния в сверх­решетках образуют электронные зоны или подзоны, которые гораздо уже, чем соответствующие зоны в обычных кристаллах. Малая ширина зон и энерг

Квантовый перенос в наноструктурах
Рассмотрим далее процессы квантового переноса, происходя­щие при протекании через наноструктуры тока от присоеди­ненных к ним внешних источников. Такие процессы можно также назвать мезоскопическим

Квантовая проводимость. Формула Ландауэра.
Для самого простого описания эффектов квантовой проводи­мости удобно рассмотреть одномерную мезоскопическую по­лупроводниковую структуру, типа квантовой проволоки. Если такая проволока является дос

Формула Ландауэра — Бюттикера для квантового переноса в многозондовых структурах
Полученное в предыдущем разделе выражение (6.15), описыва­ющее квантовый перенос в наноструктуре с двумя контактами, может быть обобщено на случай систем с большим числом кон­тактов. Рассмотрим, на

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги