Потенциальный барьер конечной ширины. - Лекция, раздел Философия, ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ В Реальной Физической Ситуации Мы Всегда Имеем Дело С Барьером Конечной Шири...
В реальной физической ситуации мы всегда имеем дело с барьером конечной ширины. Найдем коэффициенты отражения и прохождения при движении частицы через прямоугольный потенциальный барьер ширины I и высоты U1в предположении, что энергия частицы U2<Е< U1(рис. 1 .2, а).
Используя результаты разд. 1.1, можем сразу записать решения уравнения Шредингера для трех областей (1, 2 и 3):
(1.2.1)
где К1, ,
При записи уравнений (1.2.1) учтено, что в области 3 нет источников частиц и рассеивающих центров, т.е. будет распространяться только прошедшая волна.
Подставив (1.2.1) в (1.1. 10) и (1.1. 11), получим
, (1.2.2)
Амплитуды В1и A3 найдем из системы линейных алгебраических уравнений, полученной с использованием условия непрерывности волновой функции и ее первой производной на границе двух областей.
Решив систему уравнений (1.2.3), (1.2.4), для несимметричного барьера (рис. 1.2,а) получим
, (1.2.5)
(1.2.6)
Отсюда для случая симметричного барьера (рис 1.2 б), когда K1=K3, запишем
(1.2.7)
(1.2.8)
Анализ выражений (1.2.5) и (1.2.7) показывает, что в случае барьера конечной ширины и высоты появляется конечная вероятность частице пройти под барьером, что абсолютно невозможно в классическом случае, так как при E<U0формально значение кинетической энергии T становится отрицательным:
T = E-U0<0.
Проникновение частицы с энергией E<U0через потенциальный барьер - чисто квантово-механический эффект, что видно из формулы (1.2.5) (если положить в ней =0, получаем D=0). Это явление носит название туннельного эффекта.
Отметим, что коэффициенты прохождения (1.2.5) и отражения (1.2.6) оказываются симметричными по индексам 1 и 3. Это означает, что проницаемость барьера одинакова для потоков, падающих справа и слева.Из уравнения (1.2.5) также следует, что прошедший поток монотонно стремится к нулю, если либо К1, либо К3стремится к нулю. Заметим также, что проведенный анализ и формулы (1.2.5), (1.2.6) могут быть распространены и на случай барьера, показанного на рис. 1.2, в, путем замены потенциала U2на (-U2).
ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ... План лекции... Фундаментальные явления...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Потенциальный барьер конечной ширины.
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Фундаментальные явления.
Поведение подвижных носителей заряда (электронов и дырок) в наноразмерных структурах определяют три группы фундаментальных явлений: квантовое ограничение, баллистический транспорт и квантовая интер
Гетеропереходы первого и второго типов.
Рассмотрим одиночный гетеропереход между двумя полупроводниками A и B, имеющими в общем случае различную ширину запрещенной зоны
Энергетическая диаграмма одномерной сверхрешётки
Полупроводниковые квантово-размерные структуры на основе гетеропереходов принято различать по числу направлений, вдоль которых происходит ограничение движения носителей заряда (электронов или дырок
Рассеяние частиц на потенциальной ступеньке.
Проведем анализ системы, в которой частицы, испускаемые источником, удаленным на большое расстояние, рассеиваются на той или иной преграде, уходя после этого в бесконечность.
Простейшей м
Частица в прямоугольной потенциальной яме.
При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.
Особенности движения частиц над потенциальной ямой.
Мы рассмотрели случай, когда полная энергия частицы Е меньше высоты стенок потенциальной ямы (финитное движение). Здесь размерный эффект проявляется в квантовании энергии и волнового вектора
Прохождение частицы через многобарьерные квантовые структуры.
При исследовании поведения частицы (электрона) в системах, содержащих изолированные КЯ и потенциальные барьеры, установлено, что при туннелировании через одиночный потенциальный барьер коэффициен
Электрон-фононное рассеяние.
Расчеты механизмов электрон-фононного рассеяния в низкоразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводниках, например, такое рассеяни
Межподзонное рассеяние.
Рассмотрим двумерную электронную систему, локализованную в потенциальной яме, входящей в состав модулированно-легированной гетероструктуры или полевого МОП-транзистора. Очевидно, что при достаточн
Экспериментальные данные по продольному переносу
На рис. 6.2 представлены данные, иллюстрирующие прогресс, достигнутый в области повышения подвижности электронов при продольном переносе за последние двенадцать лет в наноструктурах на основе GаАs,
Продольный перенос горячих электронов
В некоторых типах полевых транзисторов и наноструктур кинетическая энергия электронов, ускоряемых электрическим полем, может становиться очень высокой и значительно превышать равновесную тепловую
Поперечный перенос в наноструктурах в электрическом поле.
В этом разделе мы рассмотрим движение носителей в направлении, перпендикулярном плоскостям потенциальных барьеров, разделяющих квантовые гетероструктуры. Такой вид переноса часто ассоциируется с
Резонансное туннелирование
Резонансное туннелирование (РТ) сквозь двойной потенциальный барьер является одним из явлений вертикального квантового переноса, уже нашедший широкое практическое применение в создании диодов и тр
Влияние поперечных электрических полей на свойства сверхрешеток
Ранее уже указывалось, что электронные состояния в сверхрешетках образуют электронные зоны или подзоны, которые гораздо уже, чем соответствующие зоны в обычных кристаллах. Малая ширина зон и энерг
Квантовый перенос в наноструктурах
Рассмотрим далее процессы квантового переноса, происходящие при протекании через наноструктуры тока от присоединенных к ним внешних источников. Такие процессы можно также назвать мезоскопическим
Квантовая проводимость. Формула Ландауэра.
Для самого простого описания эффектов квантовой проводимости удобно рассмотреть одномерную мезоскопическую полупроводниковую структуру, типа квантовой проволоки. Если такая проволока является дос
Новости и инфо для студентов