рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Квантовая проводимость. Формула Ландауэра.

Квантовая проводимость. Формула Ландауэра. - Лекция, раздел Философия, ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ Для Самого Простого Описания Эффектов Квантовой Проводи­мости Удобно Рассмотр...

Для самого простого описания эффектов квантовой проводи­мости удобно рассмотреть одномерную мезоскопическую по­лупроводниковую структуру, типа квантовой проволоки. Если такая проволока является достаточно короткой (т. е. ее длина меньше среднего свободного пробега электрона в рассматрива­емом веществе), то движение электронов будет происходить без рассеяния, и перенос будет носить баллистический характер. Предположим, что, как показано на рис. 6.11, такая кванто­вая проволока идеальными контактами (т. е. такими, в кото­рых полностью отсутствуют процессы рассеяния) соединена с двумя резервуарами, характеризующимися уровнями Ферми ЕF1 и ЕF2, между которыми приложено слабое напряжение V для обеспечения протекания тока через проволоку. В результате между резервуарами возникает разность потенциалов еV, рав­ная (ЕF1 - ЕF2).

Рис. 6.11. Схематическое представление одномерной мезоскопической системы, используемое для вывода формулы Ландауэра.

 

Величина протекающего при этом по проволоке тока I равна произведению концентрации электронов (которую можно определить по функции плотности состояний п1D(Е) в интервале энергий еV) на скорость электронов v(Е) и единич­ный заряд:

I = eп1D(Е)v(E)eV. (6.10)

Подставляя в это выражение формулу (4.21) для плотности состояний п1D(Е) (из формулы выбрасывается только коэффи­циент 2, поскольку в рассматриваемой системе электроны могут двигаться лишь в одном направлении), можно легко получить для тока выражение

, (6.11)

которое, что довольно интересно, оказывается не зависящим от скорости носителей. Проводимость G≡ (I/V) при этом равна

. (6.12)

Стоит отметить также, что (в отличие от классической про­водимости, обратно пропорциональной длине проводника) проводимость квантовой проволоки вообще никак не зависит от ее длины. Отношение

(6.13)

называется квантовой единицей проводимости, а соответствую­щее обратное отношение

kW (6.14)

называется квантовым сопротивлением и может быть измере­но экспериментально. Поскольку отношение 2е2/h используется в теории очень часто, его иногда называют также фундамен­тальной проводимостью.

Все приведенные формулы для квантовой проводимости и сопротивления были получены на основе чрезвычайно прос­той, одномерной мезоскопической модели, однако сам факт квантования классических физических параметров (типа про­водимости и сопротивления) в физике мезоскопических сис­тем имеет фундаментальное значение. Для рассмотрения более сложных систем мы постараемся обобщить полученные резуль­таты. Один из вариантов такого обобщения, предложенный в следующем разделе, состоит в использовании наноструктур с большим числом соединений (а не двух, как в случае одно­мерной системы). Еще вариант обобщения результатов связан с учетом энергетических подзон в рассматриваемых низко­размерных полупроводниках. Если концентрация электронов или их энергия достаточно велики, в перенос могут вовлекаться электроны подзон, лежащих выше первого уровня квантования.

Для квантовых проволок такие подзоны (каналы, по термино­логии квантового переноса) возникают из поперечных состояний. Предполагая наличие нескольких каналов, можно представить, что электроны могут инжектироваться из контактов в любой канал (или моду) т, поступать в мезоскопическую струк­туру, а затем, после взаимодействия с рассеивающим центром, возникать в другом канале — п. Такие электроны будут вносить свой вклад в полную или общую проводимость системы, равный произведению кванта проводимости 2е2/h на квантово-мехническую вероятность перехода |tmn|2, соответствующую инжекции электронов в канал т и их переходу в другой канал п (отметим, что в такой формулировке вероятность перехода выражается через амплитуды или вероятности пропускания tmn волновых функций электрона). Полная проводимость в этом случае может быть полу­чена суммированием процессов по всем каналам, т. е.

, (6.15)

где N — полное число каналов, участвующих в рассматрива­емых процессах проводимости. Уравнение (6.15), называемое формулой Ландауэра, может рассматриваться как обобщение уравнения (6.12) для мезоскопической системы с двумя контак­тами и большим числом каналов.

При изучении процессов квантового переноса часто исполь­зуются наноструктуры, состоящие из сужений внутри двумерной системы. В качестве примера можно привести показанную на рис. 6.12 структуру, в которой движение электронов в двумерной гетероструктуре управляется расщепленным затвором. Исполь­зование электрода с такой специальной формой позволяет при приложении напряжения вследствие формируемого распределе­ния потенциала ограничить движение электронов в плоскости двумерной системы и заставить их двигаться в очень малой ква­зиодномерной области. Такие структуры называют квантовым точечным контактом (QРС) или даже электронным волноводом, по аналогии с привычными волноводами в радиофизике.

На рис. 6.12 представлены результаты первого эксперимента по обнаружению квантовой проводимости, проведенного Визом и другими в 1988 г. на квантовом точечном контакте (форма которого приведена на врезке), образованном в квантовой гете­роструктуре АlGаАs/GаАs. Легко заметить, что с ростом прило­женного напряжения экспериментально измеренная квантовая проводимость меняется скачками (квантуется) с шагом, равным упомянутой выше фундаментальной проводимости 2е2/h. Кванто­вание явно следует из уравнения (6.15), в котором коэффициенты пропускания приближаются к единице вследствие очень низких скоростей процессов рассеяния, что заведомо справедливо для квантовых точечных контактов. При этом экспериментальное на­блюдение горизонтальных участков вольт-амперной характеристики представляет собой часто сложную задачу, так как эта ломаная линия «сглаживается» в результате многих побочных процессов: влияния неупругого рассеяния, конечного сопротивления кон­тактов, наличия примесных атомов, шероховатости поверхности и т. д.

Рис. 6.12. Зависимость квантовой проводимости от напряжения на управляющем электроде (форма которого приведена на врезке) при 0,6 К для квантовых точечных контактов, создаваемых в гетероструктуре АlGаАs/GаАs.

 

В результате указанных факторов неточность определения экспериментально измеряемых значений ступенек на кривой про­водимости может достигать нескольких процентов, что и показано на рисунке. С другой стороны при наложении сильных магнитных полей, в силу столь же объективных причин, точность измерения высоты сту­пенек на кривой проводимости повышается на несколько поряд­ков и возрастает до 106 раз! Именно по этой причине квантовый эффект Холла, находит множество применений в метрологии и технике точных измерений.

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ

ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ... План лекции... Фундаментальные явления...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Квантовая проводимость. Формула Ландауэра.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Фундаментальные явления.
Поведение подвижных носителей заряда (электронов и дырок) в наноразмерных структурах определяют три группы фундаментальных явлений: квантовое ограничение, баллистический транспорт и квантовая интер

Гетеропереходы первого и второго типов.
Рассмотрим одиночный гетеропереход между двумя полупроводни­ками A и B, имеющими в общем случае различную ширину запре­щенной зоны

Энергетическая диаграмма одномерной сверхрешётки
Полупроводниковые квантово-размерные структуры на основе гетеропереходов принято различать по числу направлений, вдоль которых происходит ограничение движения носителей заряда (электронов или дырок

Рассеяние частиц на потенциальной ступеньке.
Проведем анализ системы, в которой частицы, испускаемые ис­точником, удаленным на большое расстояние, рассеиваются на той или иной преграде, уходя после этого в бесконечность. Простейшей м

Потенциальный барьер конечной ширины.
В реальной физической ситуации мы всегда имеем дело с барь­ером конечной ширины. Найдем коэффициенты отражения и про­хождения при движении частицы через прямоугольный потенци­альный барьер ширины

Интерференционные эффекты при надбарьерном пролете частиц.
Рассмотрим особенности прохождения частицы над прямо­угольным потенциальным барьером (рис. 1.2, а), когда E>U1, и E>U2. Сразу отметим, что надба

Частица в прямоугольной потенциальной яме.
При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.

Особенности движения частиц над потенциальной ямой.
Мы рассмотрели случай, когда полная энергия частицы Е меньше высоты стенок потенциальной ямы (финитное движение). Здесь размерный эффект проявляется в квантовании энергии и волнового вектора

Движение частицы в сферически симметричной прямоугольной потенциальной яме.
Развитие нанотехнологии инициировало широкое исследование новых классов нанообъектов, в частности квантовых точек, в кото­рых осуществляется пространственное ограничение носителей за­ряда в трех из

Энергетические состояния в прямоугольной квантовой яме с бесконечными стенками и дополнительным провалом.
Возможность получения слоев с произвольным профилем из­менения состава позволила для улучшения характеристик прибо­ров использовать структуры с КЯ сложной формы. Так, для созда­ния нового поколения

Энергетическая диаграмма квантовой ямы с конечными стенками и дополнительным провалом.
В реальности мы имеем дело с потенциальными ямами, стенки которых имеют конечную высоту (см. рис. 1.9, а). Рассмотрим влияние конечной высоты стенок на разрешенные значения энер­гии основног

Структура со сдвоенной квантовой ямой. Энергетический спектр частицы в системе с δ-образным барьером.
Выше мы рассмотрели поведение частиц в системах, содержа­щих изолированные КЯ и потенциальные барьеры. Как уже отме­чалось, накопленный к настоящему времени опыт и достижения техники для выращивани

Прохождение частицы через многобарьерные квантовые структуры.
При исследовании поведения частицы (электрона) в системах, содержащих изолированные КЯ и потенциальные барьеры, уста­новлено, что при туннелировании через одиночный потенциаль­ный барьер коэффициен

Электрон-фононное рассеяние.
Расчеты механизмов электрон-фононного рассеяния в низ­коразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводни­ках, например, такое рассеяни

Межподзонное рассеяние.
Рассмотрим двумерную электронную систему, локализован­ную в потенциальной яме, входящей в состав модулированно-легированной гетероструктуры или полевого МОП-транзистора. Очевидно, что при достаточн

Экспериментальные данные по продольному переносу
На рис. 6.2 представлены данные, иллюстрирующие прогресс, достигнутый в области повышения подвижности электронов при продольном переносе за последние двенадцать лет в наноструктурах на основе GаАs,

Продольный перенос горячих электронов
В некоторых типах полевых транзисторов и нано­структур кинетическая энергия электронов, ускоряемых элек­трическим полем, может становиться очень высокой и значительно превышать равновесную тепловую

Поперечный перенос в наноструктурах в электрическом поле.
В этом разделе мы рассмотрим движение носителей в направле­нии, перпендикулярном плоскостям потенциальных барьеров, разделяющих квантовые гетероструктуры. Такой вид перено­са часто ассоциируется с

Резонансное туннелирование
Резонансное туннелирование (РТ) сквозь двойной потенци­альный барьер является одним из явлений вертикального квантового переноса, уже нашедший широкое практическое применение в создании диодов и тр

Влияние поперечных электрических полей на свойства сверхрешеток
Ранее уже указывалось, что электронные состояния в сверх­решетках образуют электронные зоны или подзоны, которые гораздо уже, чем соответствующие зоны в обычных кристаллах. Малая ширина зон и энерг

Квантовый перенос в наноструктурах
Рассмотрим далее процессы квантового переноса, происходя­щие при протекании через наноструктуры тока от присоеди­ненных к ним внешних источников. Такие процессы можно также назвать мезоскопическим

Формула Ландауэра — Бюттикера для квантового переноса в многозондовых структурах
Полученное в предыдущем разделе выражение (6.15), описыва­ющее квантовый перенос в наноструктуре с двумя контактами, может быть обобщено на случай систем с большим числом кон­тактов. Рассмотрим, на

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги