Особенности движения частиц над потенциальной ямой.
Особенности движения частиц над потенциальной ямой. - Лекция, раздел Философия, ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ Мы Рассмотрели Случай, Когда Полная Энергия Частицы Е Меньше Высоты Ст...
Мы рассмотрели случай, когда полная энергия частицы Е меньше высоты стенок потенциальной ямы (финитное движение). Здесь размерный эффект проявляется в квантовании энергии и волнового вектора частицы.
Когда энергия частицы превосходит высоту стенок потенциальной ямы (Е > Uj, см. рис. 1.4), движение частицы инфинитное.
Однако, здесь возможны отражение частиц от областей с резким изменением потенциала (в данном случае от краев ямы) и даже своеобразный резонансный захват пролетающих над ямой частиц.
Если частица движется вдоль оси X, то, достигая потенциальной ямы, она испытывает действие сил. При этом частица либо отразится, либо «пройдет» над потенциальной ямой. В областях 1 и 2 (см. рис. 1.4, а) решение уравнения (1.1.2) имеет вид
(1.5.1)
где К1, К2
В области 3 (х > W/2) решение имеет вид уходящей от ямы волны
(1.5.2)
здесь К3
Чтобы вычислить коэффициенты прохождения и отражения (1.2.2), надо выразить амплитуды А3и В1через амплитуду падающей волны A1. Для этого используем условие непрерывности волновой функции и потока частиц при X = ±W/2. В результате получим
(1.5.3)
Z= (1.5.4)
Для симметричной ямы, когда К1 = К3(см. рис. 1.4, б),
(1.5.5)
(1.5.6)
Отметим, что по виду выражения (1.5.3) - (1.5.6) совпадают с аналогичными выражениями (1.3.2) - (1.3.5) для прохождения частицы над потенциальным барьером.
Согласно (1.5.3) при прохождении частиц над потенциальной ямой, как и в случае потенциального барьера, коэффициент прохождения осциллирует с увеличением энергии частицы (рис. 1.7). В обоих случаях осцилляции имеют одну и ту же физическую природу. Квазиклассически их можно трактовать как результат интерференции электронных волн, отраженных от скачков потенциала на границах барьера или ямы. Однако, при близком качественном характере зависимостей имеются и заметные различия. Так, при равных значениях ширин и скачков потенциала барьера и ямы размах осцилляции коэффициента D при прохождении частиц над чем при прохождении над ямой.
Рис. 1.7. Зависимость коэффициента прохождения частицы над потенциальной ямой от энергии:
1-U0/V=1, 2- U0/V=2, 3- U0/V=3, 4 - U0/V=4
На первый взгляд движение электронов над потенциальной ямой оказывается еще менее пригодным для наблюдения и использования осцилляции коэффициента прохождения частицы. Однако в данном случае заметные осцилляции могут наблюдаться при сравнительно небольших энергиях частицы, что улучшает условия их наблюдения.
Фундаментальные явления.
Поведение подвижных носителей заряда (электронов и дырок) в наноразмерных структурах определяют три группы фундаментальных явлений: квантовое ограничение, баллистический транспорт и квантовая интер
Гетеропереходы первого и второго типов.
Рассмотрим одиночный гетеропереход между двумя полупроводниками A и B, имеющими в общем случае различную ширину запрещенной зоны
Энергетическая диаграмма одномерной сверхрешётки
Полупроводниковые квантово-размерные структуры на основе гетеропереходов принято различать по числу направлений, вдоль которых происходит ограничение движения носителей заряда (электронов или дырок
Рассеяние частиц на потенциальной ступеньке.
Проведем анализ системы, в которой частицы, испускаемые источником, удаленным на большое расстояние, рассеиваются на той или иной преграде, уходя после этого в бесконечность.
Простейшей м
Потенциальный барьер конечной ширины.
В реальной физической ситуации мы всегда имеем дело с барьером конечной ширины. Найдем коэффициенты отражения и прохождения при движении частицы через прямоугольный потенциальный барьер ширины
Частица в прямоугольной потенциальной яме.
При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.
Прохождение частицы через многобарьерные квантовые структуры.
При исследовании поведения частицы (электрона) в системах, содержащих изолированные КЯ и потенциальные барьеры, установлено, что при туннелировании через одиночный потенциальный барьер коэффициен
Электрон-фононное рассеяние.
Расчеты механизмов электрон-фононного рассеяния в низкоразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводниках, например, такое рассеяни
Межподзонное рассеяние.
Рассмотрим двумерную электронную систему, локализованную в потенциальной яме, входящей в состав модулированно-легированной гетероструктуры или полевого МОП-транзистора. Очевидно, что при достаточн
Экспериментальные данные по продольному переносу
На рис. 6.2 представлены данные, иллюстрирующие прогресс, достигнутый в области повышения подвижности электронов при продольном переносе за последние двенадцать лет в наноструктурах на основе GаАs,
Продольный перенос горячих электронов
В некоторых типах полевых транзисторов и наноструктур кинетическая энергия электронов, ускоряемых электрическим полем, может становиться очень высокой и значительно превышать равновесную тепловую
Поперечный перенос в наноструктурах в электрическом поле.
В этом разделе мы рассмотрим движение носителей в направлении, перпендикулярном плоскостям потенциальных барьеров, разделяющих квантовые гетероструктуры. Такой вид переноса часто ассоциируется с
Резонансное туннелирование
Резонансное туннелирование (РТ) сквозь двойной потенциальный барьер является одним из явлений вертикального квантового переноса, уже нашедший широкое практическое применение в создании диодов и тр
Влияние поперечных электрических полей на свойства сверхрешеток
Ранее уже указывалось, что электронные состояния в сверхрешетках образуют электронные зоны или подзоны, которые гораздо уже, чем соответствующие зоны в обычных кристаллах. Малая ширина зон и энерг
Квантовый перенос в наноструктурах
Рассмотрим далее процессы квантового переноса, происходящие при протекании через наноструктуры тока от присоединенных к ним внешних источников. Такие процессы можно также назвать мезоскопическим
Квантовая проводимость. Формула Ландауэра.
Для самого простого описания эффектов квантовой проводимости удобно рассмотреть одномерную мезоскопическую полупроводниковую структуру, типа квантовой проволоки. Если такая проволока является дос
Новости и инфо для студентов