рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Особенности движения частиц над потенциальной ямой.

Особенности движения частиц над потенциальной ямой. - Лекция, раздел Философия, ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ Мы Рассмотрели Случай, Когда Полная Энергия Частицы Е Меньше Высоты Ст...

Мы рассмотрели случай, когда полная энергия частицы Е меньше высоты стенок потенциальной ямы (финитное движение). Здесь размерный эффект проявляется в квантовании энергии и волнового вектора частицы.

Когда энергия частицы превосходит высоту стенок потенци­альной ямы > Uj, см. рис. 1.4), движение частицы инфинитное.

Однако, здесь возможны отражение частиц от областей с резким изменени­ем потенциала (в данном случае от краев ямы) и даже своеоб­разный резонансный захват пролетающих над ямой частиц.

Если частица движется вдоль оси X, то, достигая потенциаль­ной ямы, она испытывает действие сил. При этом частица либо от­разится, либо «пройдет» над потенциальной ямой. В областях 1 и 2 (см. рис. 1.4, а) решение уравнения (1.1.2) имеет вид

(1.5.1)

где К1, К2

В области 3 (х > W/2) решение имеет вид уходящей от ямы волны

(1.5.2)

здесь К3

Чтобы вычислить коэффициенты прохождения и отражения (1.2.2), надо выразить амплитуды А3 и В1 через амплитуду падаю­щей волны A1. Для этого используем условие непрерывности волно­вой функции и потока частиц при X = ±W/2. В результате получим

(1.5.3)

Z= (1.5.4)

Для симметричной ямы, когда К1 = К3 (см. рис. 1.4, б),

(1.5.5)

(1.5.6)

Отметим, что по виду выражения (1.5.3) - (1.5.6) совпадают с аналогичными выражениями (1.3.2) - (1.3.5) для прохождения час­тицы над потенциальным барьером.

Согласно (1.5.3) при прохождении частиц над потенциаль­ной ямой, как и в случае потенциального барьера, коэффициент прохождения осциллирует с увеличением энергии частицы (рис. 1.7). В обоих случаях осцилляции имеют одну и ту же физи­ческую природу. Квазиклассически их можно трактовать как ре­зультат интерференции электронных волн, отраженных от скачков потенциала на границах барьера или ямы. Однако, при близком качественном характере за­висимостей имеются и заметные различия. Так, при равных значе­ниях ширин и скачков потенциала барьера и ямы размах осцил­ляции коэффициента D при прохождении частиц над чем при прохождении над ямой.

Рис. 1.7. Зависимость коэффициента прохождения частицы над потенциальной ямой от энергии: 1-U0/V=1, 2- U0/V=2, 3- U0/V=3, 4 - U0/V=4

На первый взгляд движение электронов над потенциальной ямой оказывается еще менее пригодным для наблюдения и исполь­зования осцилляции коэффициента прохождения частицы. Однако в данном случае заметные осцилляции могут наблюдаться при сравнительно небольших энергиях частицы, что улучшает условия их наблюдения.

 

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ №1 ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ. ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ

ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ ПОЛУПРОВОДНИКОВЫЕ СТРУКТУРЫ И ИХ КЛАССИФИКАЦИЯ... План лекции... Фундаментальные явления...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Особенности движения частиц над потенциальной ямой.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Фундаментальные явления.
Поведение подвижных носителей заряда (электронов и дырок) в наноразмерных структурах определяют три группы фундаментальных явлений: квантовое ограничение, баллистический транспорт и квантовая интер

Гетеропереходы первого и второго типов.
Рассмотрим одиночный гетеропереход между двумя полупроводни­ками A и B, имеющими в общем случае различную ширину запре­щенной зоны

Энергетическая диаграмма одномерной сверхрешётки
Полупроводниковые квантово-размерные структуры на основе гетеропереходов принято различать по числу направлений, вдоль которых происходит ограничение движения носителей заряда (электронов или дырок

Рассеяние частиц на потенциальной ступеньке.
Проведем анализ системы, в которой частицы, испускаемые ис­точником, удаленным на большое расстояние, рассеиваются на той или иной преграде, уходя после этого в бесконечность. Простейшей м

Потенциальный барьер конечной ширины.
В реальной физической ситуации мы всегда имеем дело с барь­ером конечной ширины. Найдем коэффициенты отражения и про­хождения при движении частицы через прямоугольный потенци­альный барьер ширины

Интерференционные эффекты при надбарьерном пролете частиц.
Рассмотрим особенности прохождения частицы над прямо­угольным потенциальным барьером (рис. 1.2, а), когда E>U1, и E>U2. Сразу отметим, что надба

Частица в прямоугольной потенциальной яме.
При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.

Движение частицы в сферически симметричной прямоугольной потенциальной яме.
Развитие нанотехнологии инициировало широкое исследование новых классов нанообъектов, в частности квантовых точек, в кото­рых осуществляется пространственное ограничение носителей за­ряда в трех из

Энергетические состояния в прямоугольной квантовой яме с бесконечными стенками и дополнительным провалом.
Возможность получения слоев с произвольным профилем из­менения состава позволила для улучшения характеристик прибо­ров использовать структуры с КЯ сложной формы. Так, для созда­ния нового поколения

Энергетическая диаграмма квантовой ямы с конечными стенками и дополнительным провалом.
В реальности мы имеем дело с потенциальными ямами, стенки которых имеют конечную высоту (см. рис. 1.9, а). Рассмотрим влияние конечной высоты стенок на разрешенные значения энер­гии основног

Структура со сдвоенной квантовой ямой. Энергетический спектр частицы в системе с δ-образным барьером.
Выше мы рассмотрели поведение частиц в системах, содержа­щих изолированные КЯ и потенциальные барьеры. Как уже отме­чалось, накопленный к настоящему времени опыт и достижения техники для выращивани

Прохождение частицы через многобарьерные квантовые структуры.
При исследовании поведения частицы (электрона) в системах, содержащих изолированные КЯ и потенциальные барьеры, уста­новлено, что при туннелировании через одиночный потенциаль­ный барьер коэффициен

Электрон-фононное рассеяние.
Расчеты механизмов электрон-фононного рассеяния в низ­коразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводни­ках, например, такое рассеяни

Межподзонное рассеяние.
Рассмотрим двумерную электронную систему, локализован­ную в потенциальной яме, входящей в состав модулированно-легированной гетероструктуры или полевого МОП-транзистора. Очевидно, что при достаточн

Экспериментальные данные по продольному переносу
На рис. 6.2 представлены данные, иллюстрирующие прогресс, достигнутый в области повышения подвижности электронов при продольном переносе за последние двенадцать лет в наноструктурах на основе GаАs,

Продольный перенос горячих электронов
В некоторых типах полевых транзисторов и нано­структур кинетическая энергия электронов, ускоряемых элек­трическим полем, может становиться очень высокой и значительно превышать равновесную тепловую

Поперечный перенос в наноструктурах в электрическом поле.
В этом разделе мы рассмотрим движение носителей в направле­нии, перпендикулярном плоскостям потенциальных барьеров, разделяющих квантовые гетероструктуры. Такой вид перено­са часто ассоциируется с

Резонансное туннелирование
Резонансное туннелирование (РТ) сквозь двойной потенци­альный барьер является одним из явлений вертикального квантового переноса, уже нашедший широкое практическое применение в создании диодов и тр

Влияние поперечных электрических полей на свойства сверхрешеток
Ранее уже указывалось, что электронные состояния в сверх­решетках образуют электронные зоны или подзоны, которые гораздо уже, чем соответствующие зоны в обычных кристаллах. Малая ширина зон и энерг

Квантовый перенос в наноструктурах
Рассмотрим далее процессы квантового переноса, происходя­щие при протекании через наноструктуры тока от присоеди­ненных к ним внешних источников. Такие процессы можно также назвать мезоскопическим

Квантовая проводимость. Формула Ландауэра.
Для самого простого описания эффектов квантовой проводи­мости удобно рассмотреть одномерную мезоскопическую по­лупроводниковую структуру, типа квантовой проволоки. Если такая проволока является дос

Формула Ландауэра — Бюттикера для квантового переноса в многозондовых структурах
Полученное в предыдущем разделе выражение (6.15), описыва­ющее квантовый перенос в наноструктуре с двумя контактами, может быть обобщено на случай систем с большим числом кон­тактов. Рассмотрим, на

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги