рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Случайные события.

Случайные события. - раздел Математика, Предмет теории вероятностей Случайный Опыт – Это Создание Заданного Комплекса Условий И ...

Случайный опыт – это создание заданного комплекса условий и наблюдение результата. Результат интерпретируется как случайное событие(исход).

Пространство элементарных исходов – мн-во простейших(неразложимых в рамках данного опыта на более простые) взаимоисключающих исходов так, что опыт всегда заканчивается появлением одного и только одного элементарного исхода .

Случайное событие – любое подмн-во пр-ва элем. исходов заданного случайного опыта. Если результат опыта , то событие А произошло.

Основные понятия связанные со случайными событиями:

1) Всё пр-во элементарных исходов в называется достоверным событием. Очевидно достоверное событие происходит в любом опыте.

2) Пустое множество Ǿназывается невозможным событием. Очевидно невозможное событие не происходит в опыте.

3) Суммой событий А и В называется событие А+В состоящее из элем исходов входящих в мн-во . Т.о. событие А+В состоит в том что произошло хотябы одно из событий А и В.

4) Произведение А и В это событие сост. из элементарных исходов входящих в мн-во . Т.о. произведение А и В состоит в том что А и В произошли одновременно.

5) Разность событий А и В – событие состоящее из элементарных исходов, входящих в мн-во АВ. Т.о. событие А произошло, а В нет.

6) Событие А влечет за собой В, если А – подмножество В(). Т.о. всякий раз, когда происходит А, происходит и В.

7) Событие состоит из , не входящих в А, называется противоположным А

8) События А и В называются несовместными если нет входяих в А и в В одновременно.

Св-ва:

1)Коммутативность:

А+В=В+А; АВ=ВА.

2)Ассоциативность:

(А+В)+С=А+(В+С); (АВ)С=А(ВС).

3)Дистрибутивность:

(А+В)С=АС+ВС; А+ВС=(А+В)(А+С).

 


№3 Классическое определение вероятности.

События равновероятные, если нет объективных оснований для того, чтобы, одно из них было более или менее вероятным чем другое.

Случайный опыт удовлетворяющий условиям:

а) конечно.

б) все элем. исходы равновозможны

называется классической схемой.

Пусть классическая схема, -число элементарных исходов, - число исходов благоприятствующих событию А. Тогда вероятность события А:

Р(А)= /- формула классической вероятности.

Св-ва:

1)Р(А)>0

2)

3)Если А и В несовместны, (АВ= Ǿ), то Р(А+В)=Р(А)+Р(В).

 


№4 Геометрические вероятности

Пусть случайный опыт состоит в случайном выборе точки на прямой R1 или плоскости R2 или n мерного пространства Rn.

На прямой рассмотрим только мн-ва имеющие длину, на плоскости площадь, в R3-объем, в Rn- обобщенный объем.

Длина, площадь, объем – мера множества .

Пусть случайная точка пропорциональна мере А (mes A) и не зависит от других обстоятельств. Такой случайный опыт называется геометрической схемой.

Пусть геометрическая схема, событие -измеримое мн-во. Тогда вероятностью события А называется число P(A)=mes(A)/mes()

П1. 2 судна должны подойти к причалу для разгрузки в течении суток. Одновременная разгрузка невозможна. Разгрузка любого из них длится 8 часов. С какиой вероятностью одно будет ожидать разгрузки другого?

х- время прихода однеого

y
у – время прихода другого

(х,у) в R2

={(х,у) | }

A = {(х,у) | |x-y|1/3}

mes()=1, mes(A)=5/9;

P(A)=5/9

Cв-ва:

1)Р(А)

2)

3)А и В несовместимы.

 


№5 Понятие об аксиоматической вероятности

Пусть событию А, связанному со случайным опытом сопоставлена P(A). Это означает, что на мн-ве всех событий F определена числовая функция P(A), .

Чтобы вместе с вероятностью событий А и можно было найти А+В, АВ, А-В, , , , Ǿ, нужно чтобы эти события входили в F, т.е. чтобы F было алгеброй событий.

Если конечное или счетное мн-во, то алгеброй событий F будет мн-во всех подмн-в в .

П1. А={ из 4х карточек 1,2,3 и 4 случайно выбирают одну}

Найдем F:

Ǿ

Пусть - множество элем. исходов, F – алгебра событий. Числова функция Р(А), определенная на F, называется вероятностью, если она подчиняется аксиомам:

1) Р(А) , (аксиома неотрицательности)

2) (аксиома нормировки)

3) Для и В , таких что АВ= Ǿ. Р(А+В)=Р(А)+Р(В) (аксиома сложения)

 

1)

2)- вероятность элементарного исхода

В П1 Р

 

№6 Св-ва вероятности

Из основных св-в вероятности:

1) Р(А)

2)

3)АВ= Ǿ => Р(А+В)=Р(А)+Р(В)

Вытекают другие св-ва:

4)

5) Р(Ǿ)=0

6)

7)

8)Р(А+В)=Р(А)+Р(В)-Р(АВ)


№7 Условная вероятность и ее свойства. Теорема умножения.

Пусть в случайном опыте Т могут появиться события А и В. Если известно что В произошло то говорят об условной вероятности события А при условии В Р(А/В).

В произошло => реализуется один из N(B) элементарных исходов . Из N(AB) исходов благоприятствуют A

Опр. Пусть (,F,P) – вер. пространства , А, и , тогда усл.вероятностью А наз-тся число :

Замеч. 1)Аналогично , если :

2) Теорема умноженияВер-ть произведения событий равна вер-ти одного из них и умноженной на усл.вер-ть другой.

1.

2.

3.

4)Усл вер-ть обладает всеми св-ми дрю вер-тей.

5) Усл. Вер-ть P(A/B) можно рассм.,как обычную вероятность, определенную на новом про-ве Эл. Исходов

6) Для n событий формула : обобщаеться

 


№8 Независимые события, их свойства. Независимость в совокупности.

Опр. А независимое событие от В , если P(A/B)=P(A)

Свойства:

1) Свойство независимости взаимно, т.е. P(B/A)=P(B)

Т.е. А и В взаимно независимы.

2) Если А и В независимы , то P(AB)=P(A)*P(B) верно и обратное:

Опр. События А1,A2,A3,…,An независимы в совокупности , если любое из них не зависит от каждого из остальных n от всех возможных произведений этих остальных.

Опр. События A1,A2,…,An независимы в совокупности если : P(A1,A2,…,An)=P(A1)*P(A2)…P(An)

Замечание Для независимости в совокупности недостаточно попарной независимости.

№9 Формула полной вероятности.

Пусть события H1,…,Hn могут произойти в случайном опыте Т. Эти события образуют полную группу событийб если H1+H2+…+Hn=

Если к томуже события {Hz} попарно несовместимы (Hi,Hj 0, ij), то они образуют полную группу несовместимых событий , т.е. в каждом опыте происходит одно и только одно из этих событий.

Теорема.

Пусть в случ опыте могут произойти события А,H1,..,Hn, причем {Hi} образуют полную группу несовместимых событий , то

A=A*=A(H1+…+Hn)=AH1+…+AHn

P(A)=P(AH1)+P(AH2)+…+P(AHn)=> теоре. Умножения

P(A)=P(H1)P(A/H1)+…+P(Hn)P(A/Hn)

 

№10 Формула Байеса

Теорема В условиях предыдущей теоремы

 

P(Hk/A)=(P(Hk)P(A/Hk))/P(A)

По теореме умножения P(A)*P(Hk/A)=P(A*Hk)=P(Hk)P(A/Hk) /: P(A)

P(Hk/A)=(P(Hk)P(A/Hk)/P(A))

 


№11 Схема Бернулли

Повторные испытания – это проведение n раз одного и тогоже случ опыта или проведение одновременное n одинаковых опытов.

Схема Бернулли – это случ опыт состоящий в n повторных испытаниях, причем

1) z исхода (А-успех, (не)А – неудача)

2) испытания независимы , т.е. P(A) не зависит от исходов в др. испытыниях

3) p и q=1-p не изм от пыта к опыту

Найдем вер-ть pn,m появления ровно m раз успеха в серии из т испытаний.

В силу независимости испытаний вер-ть каждого такого исхода равно Число таких элементарных исходов Потому :

 

– Конец работы –

Эта тема принадлежит разделу:

Предмет теории вероятностей

На сайте allrefs.net читайте: "Предмет теории вероятностей"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Случайные события.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет теории вероятностей.
Используется 2 основных типа моделей: 1)Детерминированная: При повторении заданного опыта в неизменных условиях, событие А происходит всякий раз. П1. Опыт: К пров

Статистическая вероятность.
Еще в древности заметили статистическую устойчивость случайных явлений: если случайный опыт повторяется многократно, то отношение числа mn(A) появлений события А к числу n опытов приближ

Случайные велечины
Случайная величина = это числовая переменная, принимающая свои значения в зависимости от исхода некоторого случайного опыта Опр. Пусть (

Другие свойства
1 Fx(x) не убыв функция 2 0<=Fx(x)<=1 3 Fx(-)=0 , Fx(+

Теорема Пуассона
Пусть n->бесконечность и n->0 так что np==const , тогда

Непр. Случайная. Величина.
Опр. X наз-ся непр, если неотриц функция Fx(x)(функция плотности расп-я), т

Дисперсия
D[x]= Найдем для x~N(m,

Следствия из центральной предельной теоремы.
1) Распределение среднего арифметического Пусть выполняются условия центральной предельной теоремы и

Первичная обработка выборки.
1. Вариационный ряд – это выборка упорядоченная в порядке неубывания

Точечные оценки параметров распределения.
Опр. Правило (функция) с помощью которого по выборке

Несмещенность выборочного среднего и дисперсии (m неизвестно)
Оценки и

Несмещенность выборочной дисперсии (m неизвестно)
Оценка является асимптотически несмещенной.

Эффективность точечной оценки.
Опр. Несмещенная оценка параметра

Метод моментов.
Пусть з-н распределения интервальной совокупности Х известен с точностью до параметров . Выберем m

Распределение отношения выборочных дисперсий 2 норм генер совокупностей.
Пусть генеральные совместимости , m1, m2 известны.

Интервальные оценки. Доверительный интервал. Доверительная вероятность.
В ряде задач требуется не только найти для параметра подходящую оценку

Доверительный интервал для оценки МО при НЕизвестной дисперсии
2)Доверительный интервал для оценки МО при неизвестной дисперсии нормально распределенной генеральной совокупности. Пусть

Доверительный интервал для оценки МО при известной дисперсии
1) Доверительный интервал для оценки МО при известной дисперсии нормально распределенной генеральной совокупности. Пусть

Доверительный интервал для оценки дисперсии при неизвестном МО.
3) Доверительный интервал для оценки дисперсии при неизвестном МО нормально распределенной генеральной совокупности. Пусть

Проверка статистических гипотез
Пусть Х – наблюдаемая СВ. Она может быть дискретной, а может и непрерывной. Опр. Статистической гипотезой Н называется предположение относительно параметров или вида распреде

Ошибки 1 и 2 рода
Статистическое решение может быть ошибочным. При этом различают ошибки I-го и II-го родов.Опр. Ошибкой первого рода называется ошибка, состоящая в том, что гипотеза Н0 откл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги