рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Инженерная геология

Инженерная геология - раздел Геология, 1) Инженерная Геология Отрасль Геологии (См. Геология), Изучающая Ве...

1) Инженерная геология

отрасль геологии (См. Геология), изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех процессов и явлений, которые возникают при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

И. г. зародилась в 19 в. В России первые инженерно-геологические работы были связаны со строительством железных дорог (1842—1914). В них принимали участие А. П. Карпинский, Ф. Ю. Левинсон-Лессинг, И. В. Мушкетов, А. П. Павлов, В. А. Обручев и др. Как наука И. г. оформилась в СССР к концу 1930-х гг. в результате исследований, связанных главным образом с гидротехническим строительством. В её развитии большая роль принадлежит Ф. П. Саваренскому, И. В. Попову, Н. Н. Маслову, В. А. Приклонскому, М. П. Семенову и др.

И. г. подразделяется на: Грунтоведение, изучающее горные породы и почвы, исследуемые в качестве оснований, естественных материалов и среды для инженерных сооружений; инженерную геодинамику, рассматривающую наряду с природными геологическими процессами процессы, возникающие под влиянием инженерной деятельности человека, и региональную инженерную геологию, которая изучает региональный и зональный характер распространения инженерно-геологических процессов и явлений; оценивает применительно к данной территории геологические факторы, определяющие условия строительства и эксплуатации инженерных сооружений; даёт прогноз изменения инженерно-геологических условий в результате строительства.

Морская И. г. изучает возможности строительства в условиях субаквальной среды. Формируется направление, изучающее влияние инженерной деятельности человека на глубокие горизонты земной коры (зону Катагенеза), а также изучающее сейсмические явления с инженерно-геологических позиций (инженерная сейсмогеология).

И. г. тесно связана с гидрогеологией, геокриологией (мерзлотоведением), нефтяной геологией. При полевых исследованиях она использует геофизические методы (электроразведка, микросейсмика, ультразвуковой и ядерно-пенетрационный каротаж), а также физические и химические методы. Для проникновения в «микромир» горных пород применяются электронная микроскопия, электронография, рентгенография и др. методы лабораторных исследований.

2)Гидросфе́ра (от др.-греч. Yδωρ — вода и σφαῖρα — шар) — это водная оболочка Земли.

Она образует прерывистую водную оболочку. Средняя глубина океана составляет 3800 м, максимальная (Марианская впадина Тихого океана) — 11 022 метра. Около 97 % массы гидросферы составляют соленые океанические воды, 2,2 % — воды ледников, остальная часть приходится на подземные, озерные и речные пресные воды. Общий объём воды на планете около 1 532 000 000 кубических километров. Масса гидросферы примерно 1,46*1021 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей планеты. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворенного кислорода — 8 трлн тонн. Область биосферы в гидросфере представлена во всей ее толще, однако наибольшая плотность живого вещества приходится на поверхностные прогреваемые и освещаемые лучами солнца слои, а также прибрежные зоны.

В общем виде принято деление гидросферы на Мировой океан, континентальные воды и подземные воды. Большая часть воды сосредоточена в океане, значительно меньше — в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96 % объёма гидросферы составляют моря и океаны, около 2 % — подземные воды, около 2 % — льды и снега, около 0,02 % — поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу.

Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни наземной биосферы, являясь основным источником водоснабжения, орошения и обводнения. Сверх того эта часть гидросферы находится в постоянном взаимодействии с атмосферой и земной корой.

Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на земном шаре. В гидросфере впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу. Океаническую кору слагают осадочный и базальтовый слои.

Породообразующие минералы

В природе найдено более 3 тыс. минералов, но лишь немногие из них образуют крупные скопления; такие минералы называют породообразующими. Каждый минерал обладает комплексом только ему присущих свойств и признаков. К… Твердость — наиболее характерное свойство минералов. Существует много методов определения твердости (см. п. 2.5),…

Материалы из магматических пород

Материалы из осадочных и метаморфических пород

6) Как образуются горные породы Три основных вида горных пород — магматические, осадочные и метаморфические —… Магматические породы образовались из магмы (расплавленной массы внутренней мантии Земли) в результате ее остывания и…

Характеристики трещиноватости скальных массивов

8) Тектоническими нарушениями называются перемещения вещества земной коры под влиянием процессов, происходящих в более глубоких недрах Земли. Эти…   9) Сейсмические явления наблюдаемые при землетрясениях на поверхности Земли со времен академика Б.Б.Голицина, принято…

Эндогенными (внутренними) процессами называются такие геологические процессы, происхождение которых связано с глубокими недрами Земли. Вещество земного шара развивается во всех своих частях, в том числе и в глубинных. В недрах Земли под внешними ее оболочками происходят сложные физико-механические и физико - химические преобразования вещества, в результате которых возникают мощные силы, воздействующие на земную кору и коренным образом преобразующие последнюю. Вот эти-то преобразующие процессы и называются эндогенными процессами. Наиболее отчетливо эндогенные процессы выражаются в явлениях вулканизма, под которыми понимаются процессы, связанные с перемещением магмы как в верхние слои земной коры, так и на ее поверхность. Явления вулканизма знакомят человека с материей, располагающейся в глубинах земного шара, с ее физическим состоянием и химическим составом. Проявления поверхностного вулканизма происходят не повсеместно, а приурочены к определенным участкам земной коры, положение и площадь которых изменялись в ходе геологической истории. Магма, внедряясь в земную кору, очень часто не достигает поверхности, а застывает где-то на глубине, образуя при этом глубинные, интрузивные горные породы (гранит, габбро и др.). Явления внедрения магмы в земную кору получили название глубинного вулканизма, или плутонизма. Вторым видом эндогенных процессов являются землетрясения, проявляющиеся в определенных участках земной поверхности в виде кратковременных толчков или сотрясений. Явления землетрясений, так же как и вулканизм, всегда поражали воображение человека. В тех случаях, когда толчки приходились на населенные пункты, землетрясения приносили человечеству значительные бедствия: гибель многих людей, разрушения построек и т. д. Кроме кратковременных и сильных колебаний типа землетрясений, земная кора испытывает колебания, при которых одни участки ее опускаются, а другие поднимаются. Движения совершаются очень медленно со скоростью нескольких сантиметров или даже миллиметров в столетие, они недоступны непосредственным наблюдениям без приборов. Но так как эта движения совершаются повсеместно и непрерывно в течение многих миллионов лет, то конечные результаты их весьма существенны. Вследствие этих колебательных движений, многие области, ранее бывшие сушей, оказались дном океана и, наоборот, некоторые участки земной поверхности, сейчас возвышающиеся на сотни и даже тысячи метров над уровнем моря, сохраняют свидетельство того, что когда-то они были под водой. Интенсивность колебательных движений неодинакова: на одних, участках земной коры опускания или поднятия более значительны, на других менее значительны. Одним из самых ярких проявлений внутренних сил являются складчатые и разрывные деформации земной коры. Эти явления в большинстве случаев недоступные непосредственному наблюдению, хорошо запечатлелись в характере залегания осадочных пород, слагающих земную кору. Осадки морей и океанов, выпадая из воды, ложатся обычно ровными горизонтальными пластами. Вследствие же складкообразования эти горизонтально залегающие пласты оказываются собранными в различного вида складки, а иногда разорванными или надвинутыми друг на друга. Явление смятия и разрыва пластов способствует образованию возвышенностей и гор, впадин и котловин. Многие ученые приписывали явлению складчатых деформаций главную роль в образовании гор, считая, что породы, сминаясь в складки, вспучивают земную поверхность и образуют возвышенности. Этот процесс получил название орогенеза («орос» — по-гречески возвышенность, «генез» — образование). В настоящее время установлено, что в образовании гор колебательные движения играют не меньшую роль, чем складчатые, поэтому термин «орогенез», утратив свое первоначальное значение, стал употребляться реже. Складчатые деформации проявляются только в определенных, наиболее подвижных и наиболее проницаемых для магмы участках земной коры, именуемых геосинклиналями. В противоположность им устойчивые, со слабой тектонической активностью, области называются платформами. Складчатые деформации, землетрясения и особенно вулканизм способствуют существенному изменению горных пород, слагающих земную кору. Вследствие сдавливания они становятся более плотными и твердыми, а под действием высокой температуры обжигаются и даже переплавляются. Действие паров и газов, выделяемых из магмы, способствует образованию в горных породах новых минералов. Все эти явления преобразования горных пород под действием эндогенных процессов носят название метаморфизма («метаморфизм» - по-гречески означает превращение) и также связаны с глубинными силами. К числу эндогенных процессов относятся, следовательно, вулканизм, землетрясения, колебательные движения (или эпейрогенез), складчатые и разрывные деформации и метаморфизм. Из всех видов эндогенных явлений только колебательные движения, как указывалось ранее, проявляются более или менее равномерно в пределах всей земной коры; все же остальные явления сосредотачиваются главным образом в подвижных геосинклинальных поясах Земли. Эндогенные процессы коренным образом меняют характер земной коры и, в частности, ее поверхности; они приводят к созданию основных форм рельефа поверхности Земли — горных стран и отдельных возвышенностей, огромных впадин — вместилищ океанической и морской воды и др. Формы, созданные эндогенными силами, в свою очередь подвергаются действию экзогенных сил. Возвышенности размываются реками, развеваются ветрами; у подножия возвышенностей накапливаются мощные пролювиально-делювиальные шлейфы, впадины заполняются осадками, берега впадин размываются волнами. Эндогенные силы стремятся к расчленению и усложнению рельефа земной поверхности, а экзогенные силы денудируют, т. е. выравнивают поверхность Земли. Во взаимодействии экзогенных и эндогенных процессов происходит развитие земной коры и ее поверхности. ) Сейсмические явления наблюдаемые при землетрясениях на поверхности Земли со времен академика Б.Б.Голицина, принято делить на два типа - микросейсмические и макросейсмические. Первые это те, которые обнаруживаются только по записям приборов - это и микросейсмы (сейсмический шум, колебания в прямую не связанные с землетрясениями), и слабые колебания от далеких землетрясений - расстояние до эпицентров которых может исчисляться тысячами и десятками тысяч километров. Сюда же надо отнести и неощутимые микроземлетрясения. Вторые, это колебания которые непосредственно ощущаются человеком, вызывают разрушение и сильные деформации земной поверхности. 16) Экзогенные процессы

Поверхность Земли и ее недра непрерывно изменяются под воздействием самых разнообразных сил и факторов. Эти процессы изменения протекают в подавляющем своем большинстве крайне медленно с точки зрения человека, незаметно не только непосредственно для его глаза, но часто и незаметно для многих сменяющих друг друга поколений людей. Однако именно эти медленные процессы в течение миллионов и миллиардов лет истории Земли приводят к наиболее разительным и крупным переменам в ее лике и внутреннем строении. Они и составляют главное содержание истории Земли.

Среди геологических процессов есть и такие, которые проявляются очень бурно и приводят к катастрофическим последствиям. Сюда относятся мощные извержения вулканов, разрушительные землетрясения, внезапные горные обвалы и т.п. Но эти процессы проявляются значительно редко, охватывают относительно небольшие площади и играют в истории Земли значительно меньшую роль.

Чтобы верно понять динамику Земли и правильно истолковать закономерности ее развития, требуется очень тонкое наблюдение именно над медленно протекающими геологическими процессами. Их изучение и составляет основное содержание динамической геологии.

Для удобства изучения геологические процессы разделяют на две большие группы: процессы внешней геодинамики, или внешние экзогенные процессы, и процессы внутренней геодинамики, или внутренние эндогенные процессы.

Экзогенные процессы возникают в результате взаимодействия каменной оболочки с внешними сферами: атмосферой, гидросферой и биосферой. Эндогенные процессы проявляются при воздействии внутренних сил Земли на ту же каменную оболочку.

Разделение процессов на внешние и внутренние носит несколько условный характер, так как между ними нет категорического разграничения, а наоборот, наблюдается тесное взаимодействие. Тем не менее подобное деление методически вполне оправдано.

Экзогенные процессы в свою очередь подразделяются на три большие группы: процессы выветривания, процессы денудации и процессы аккумуляции, или осадконакопления.

Выветривание представляет собой процесс изменения (разрушения) горных пород и минералов вследствие приспособления их к условиям земной поверхности. Оно состоит в изменении физических свойств минералов и горных пород, главным образом сводящегося к их механическому разрушению, разрыхлению и изменению химических свойств под воздействием воды, кислорода и углекислого газа атмосферы и жизнедеятельности организмов.

Денудация и аккумуляция (или осадконакопление) тесно взаимосвязаны. Под денудацией понимается совокупность процесса сноса продуктов разрушения горных пород, создаваемых в основном выветриванием. Она проявляется главным образом в пределах суши и сводится к перемещению раздробленного или химически растворенного материала с возвышенностей в депрессии рельефа – долины, котловины, озерные и морские бассейны. Главными ее агентами являются сила тяжести, текучие воды, ветер и движущиеся льды ледников. Денудация (от латинского слова «денудо» – обнажаю) приводит к разрушению целых горных систем, шаг за шагом сравнивая их с землей и превращая в равнины.

Аккумуляция – это сумма всех процессов накопления осадков, возникающих в понижениях рельефа Земли за счет принесенных денудацией продуктов выветривания. Она является первой стадией образования новых осадочных горных пород.

Выветривание лишь подготавливает материал для денудации, но само по себе еще не приводит к серьезным изменениям лика Земли. Денудация же является наиболее активны фактором преобразования Земли, мобилизующим, приводящим в движение огромные массы вещества. Поэтому изучение денудации является одним из главных предметов динамической геологии. Аккумуляция – это дальнейшее звено в цепи экзогенных процессов, сводящееся к тому, что продукты выветривания как бы вновь обретают покой, теряют свою подвижность, входя в состав осадочных пород. Однако аккумуляция не является конечным звеном в цепи преобразования материи, но лишь этапом в круговороте ее в условиях Земли.

Об интенсивности денудации, выражающей суммарную работу экзогенных сил, судят по количеству разрушенного материала, сносимого реками с суши, и по интенсивности срезания ею поверхности континентов. Эти величины могут быть проиллюстрированы следующими данными: в Средней Азии реки за год перемещают только во взвешенном состоянии от 5 до 3000 т с 1 км2. Для Кавказа величина сноса достигает за год 75–2248 т с 1 км2. Срезание поверхности Русской равнины вследствие денудации составляет 0,03 мм за год.

Для горных областей величина денудации возрастает в несколько раз: так, в Средней Азии величина денудации достигает 0,26 мм, на Кавказе – 0,45 мм, в Северных Альпах – 0,57 мм в год и т.д. Денудация суши длится иногда многие миллионы лет, поэтому общая величина срезания континентов с течением времени становится весьма ощутимой. В истории Земли известны многочисленные примеры срезания под корень высоких горных массивов и превращения горного рельефа в равнинный.

В процессах денудации наблюдается последовательная смена трех стадий – разрушения, переноса и отложения разрушенного материала, завершающихся воссозданием новых пород осадочного происхождения. Лишь в процессе выветривания отсутствует среднее звено – перенос, и вследствие разрушения исходных пород сразу возникают новые, на них не похожие, но как бы замещающие их на том месте.

17) .ПРОЦЕССЫ ДЕФЛЯЦИИ И КОРРАЗИИ

ветер воздушный масса рельеф

Разрушительная деятельность ветра складывается из двух процессов - дефляции и корразии

Дефляция - процесс выдувания и развевания ветром частиц рыхлых горных пород. Дефляции подвергаются мелкие частицы пелитовой, алевритовой и песчаной размерности. Различают площадную и локальную дефляцию. Площадная дефляция приводит к равномерному выдуванию рыхлых частиц с обширных площадей; понижение поверхности за счёт такой дефляции может достигать 3 см в год. Площадная дефляция наблюдается как в пределах коренных скальных пород, подверженных интенсивным процессам выветривания, так и особенно на поверхностях, сложенных речными, морскими, водноледниковыми песками и другими рыхлыми отложениями. В твердых трещиноватых скальных горных породах ветер проникает во все трещины и выдувает из них рыхлые продукты выветривания. Поверхность пустынь в местах развития разнообразного обломочного материала в результате дефляции постепенно очищается от песчаных и более мелкозернистых частиц (выносимых ветром) и на месте остаются лишь грубые обломки - каменистый и щебнистый материал. Площадная дефляция иногда проявляется в засушливых степных областях различных стран, где периодически возникают сильные иссушающие ветры - "суховеи", которые выдувают распаханные почвы, перенося на далекие расстояния большое количество ее частиц. Развитие локальной дефляции определяется особенностями движения воздушных потоков и характером рельефа. Локальная дефляция проявляется в отдельных понижениях рельефа. Многие исследователи именно дефляцией объясняют происхождение некоторых крупных глубоких бессточных котловин в пустынях Средней Азии, Аравии и Северной Африки, дно которых местами опущено на многие десятки и даже первые сотни метров ниже уровня Мирового океана. Одним из примеров является впадина Карагае в Закаспии, дно которой опущено на 132 м ниже уровня моря. На дне некоторых котловин в верхнем слое пород часто происходит накопление солей. Это может быть связано или с капиллярным подъемом к поверхности днищ соленых подземных вод, или с привносом солей временными пересыхающими ручьями, или с усыханием мелких водоемов. Подземные и поверхностные воды испаряются, а соли, кристаллизация которых разрывает и разрыхляет породу, превращая ее в тонкую солончаковую пыль, остаются. В жаркие безветренные дни над солончаками днищ котловин вследствие разницы в нагреве различных элементов поверхности часто возникают мощные турбулентные потоки восходящего воздуха (штопорообразные смерчи). Восходящие токи и ветер в течение лета могут вынести весь разрыхленный материал. Ежегодное повторение указанного процесса приводит к дальнейшему углублению дефляционных впадин, или котловин выдувания. Локальная дефляция проявляется также в отдельных щелях и бороздах в горных породах (бороздовая дефляция). В трещинах, узких щелях или бороздах сила ветра больше, и рыхлый материал выдувается оттуда в первую очередь. В частности с этим видом дефляции связано углубление колеи дорог: в Китае, на сложенных лёссом территориях, на месте дорог образуются узкие каньоны глубиной впервые десятки метров.

Корразия – процесс механического истирания горных пород обломочным материалом, переносимым ветром. Заключается в обтачивании, шлифовании, и высверливании горных пород. Песчаные частицы поднимаются ветром на различную высоту, но наибольшая их концентрация в нижних приземных частях воздушного потока (до 1,0-2,0 м). Сильные длительно продолжающиеся удары песка о нижние части скальных выступов подтачивают и как бы подрезают их, и они утоняются в сравнении с вышележащими.

Этому способствуют также процессы выветривания, нарушающие монолитность породы, что сопровождается быстрым удалением продуктов разрушения. Таким образом, взаимодействие дефляции, переноса песка, корразии и выветривания придают скалам в пустынях своеобразные очертания. Некоторые из них грибообразной формы (при изменяющихся направлениях ветра), другие сходны с подточенными столбами или обелисками. При преобладании ветров одного направления в основании скальных выступов образуются различные корразионно-дефляционные ниши, небольшие пещеры, котлообразные и другие формы. В процессе такого обтачивания происходит также образование нового обломочного материала, вовлекаемого в процесс дефляции. Таким образом, процессы корразии и дефляции взаимосвязаны и протекают одновременно.

Аккумуляция материала

 

Аккумулятивная деятельность ветра заключается в накоплении эоловых отложений, среди которых выделяются два генетических типа - эоловые пески и эоловые лёссы. Эти отложения в современную эпоху образуются в пустынях и на их периферии, но во время четвертичного оледенения активно формировались и в зоне, обрамлявшей покровные ледники. Эоловые отложения возникают преимущественно в результате ветрового захвата и переноса более древних накоплений (морских, речных, озёрных и др.) или, частичном участии продуктов механического разрушения других пород. В зависимости от степени и характера эоловой переработки исходного материала песчаные отложения подразделяются на неперемещенные (перевеянные) и перемещенные (навеянные). Перевеянные отложения залегают в непосредственной близости от пород (песков) за счёт переложения которых накопились, представлены преимущественно песками. Навеянные отложения лишены пространственной связи с материнскими породами, для них характерно обогащение мелкозернистым материалом, способным перемещаться на большие расстояния, представлены лёссами.

18) Гидроизогипсы – это линии, соединяющие с одинаковыми абсолютными или относительными отметками.

Это линии обычные горизонталям рельефа они изображают рельеф поверхности грунтовых вод.

Карты гироизогипс составляют для определенной территории или строительной площадки на определенный период времени, имея карту гидроизогипс можно определить: направление движения подземных вод, скорость фильтрации, глубину заложения. В этом задании следует построить карту гидроизогипс по данным таблицы № 2, а также определить направление и скорость движения подземных вод.

Карта гидроизогипс строится по абсолютным отметкам уровня подземных вод четырех скважин расположенных в углах квадрата (рис.2), зная расстояние между скважинами и масштаб (см. табл.2) на чертеж наносится сетка скважин возле каждой скважины ее номер, абсолютную отметку устья скважины и вычисляемую абсолютную отметку уровня грунтовых вод в ней. Абсолютную отметку уровня грунтовых вод вычисляют как разность между абсолютной отметкой устья скважины и глубиной залегания грунтовых вод в ней. После определения абсолютных отметок устьев скважин и уровня грунтовых вод приступают к построению горизонталей двух поверхностей рельефа местности и зеркала грунтовых вод. Горизонталь располагаем по всем сторонам квадрата, равномерно между скважинами, применяя один из способов интерполяции по превышению. Таким образом, разбиваем все стороны квадрата, составляющие сетку скважин и одну диагональ квадрата Диагональ для интерполяции ту, по концам которой в скважине наблюдается наибольшая разность абсолютных отметок.

После разбивки сторон квадрата и диагонали, горизонталь проводим по точкам на поверхности земли или грунтовых вод имеющие одинаковые отметки. Точки на сторонах квадрата и его диагонали с одинаковыми отметками соединяем главными кривыми линиями.

Горизонтали рельефа изображаем сплошными черными линиями, гидрогипсы пунктирными синими и пронумеровываем их. После построения карты гидроизогипс на ней сплошными синими стрелками показываем направление потока грунтовых вод, эти стрелки направлены по касательным в точках к гидроизогипсам, где движение потока изменяется, что и видно по искривлению гидроизогипс. Далее по выбранной в квадратах для интерполяции диагонали Вычисляем гидравлический уклон (градиент)

19) Дренаж устанавливается на участках с избыточной влажностью. Дренажные системы устанавливаются несколькими способами: открытыми канавами или закрытыми траншеями.

Дренаж необходим для обеспечения роста растений, сухих пешеходных дорожек, предотвращения затопляемости подвальных помещений и разрушения вследствие высокой влажности фундамента.

Открытый дренаж устанавливается по границе участка. Дренажная система устанавливается по специальному проекту, который учитывает уровень залегания вод и многие другие факторы.

Закрытая дренажная система включает такие элементы, как осушительный дрен, колодец, водоприемник. Для того, чтобы дренаж работал целый год, его закладывают ниже уровня промерзания почвы.

В плотных грунтах трубы пролегают на расстоянии 6-10 м друг от друга.

Уклон боковых ответвлений должен быть около 0,003, а уклон магистральных – 0,002. Если позволяет глубина канавы, то можно и 0,005, особенно в илистых почвах.

Боковые водосборные трубы пролегают под землей на глубину, равной почти метру. Магистральные – на 5 см ниже. Важно учитывать все уклоны, чтобы они были равными и регулярными. Дно канавы должно быть ровным и плотным по своей структуре, для этого производят специальные работы.

Специальные муфты и тройники обеспечивают стыковку трубопроводов.

20) Геологическая деятельность рек
Он передвигают грунт, камни и другие породы. Проточная вода обладает немалой силой, и иссушая способность у нее незначительна Камни и мелкие осколки, которые вода подбирает па споем пути, усиливают ее абразивный эффект. Сила проточной воды поднимает то, что лежит па дне реки и берегах. Камни в воде этого процесса хаотично ударяются о другие камни и о берег. В быстром беспорядочном течении большие камни крошатся на мелкие части. Даже мелкий материал, такой как песок или ил, обладает абразивными свойствами, подобно используемому в домашних условиях чистящему порошку. Под их воздействием острые части камней стачиваются, превращаясь с годами в гладкую гальку.
Мощность реки в значительной степени зависит от объема воды и от уклона. Например, маленький горный ручеек иногда превращается в стремительный поток, способный ворочать огромными валунами, когда вследствие таяния снега или бури объем воды вдруг увеличивается.
Неторопливые зрелые реки иногда омолаживаются, когда вследствие тектонических движении повышается уровень земли, увеличивая уклон потока. Помолодевшие реки прокладывают новые и глубокие долины. Возможно, самым ярким примером деятельности рек является Большой Каньон па юго-западе США. Это огромное ущелье в скале протянулось на 450 км, а максимальная глубина каньона, обрывающегося в воды Колорадо, составляет 1,6 км.
За миллионы лег уровень ландшафт, по которому течет река, повысился. Так как река пробивала себе путь через скалы, земля поднималась, а река пробиралась псе глубже и глубже. Ученые считают, что за нее это время реке пришлось прорезать почти 3 км скальной породы па споем пути, причем 1,4 км верхнего слоя этой породы были полностью смыты с плато.
Размер кусков породы, переносимых водой, зависит от скорости течения. При скорости в 30 км/чрека может передвигать разные материалы, включая огромные валуны, которые перекатываются по дну. Вода, текущая со скоростью 10 км/ч, двигает небольшие камин. При скорости в 0.5 км/чрека может переносить только песок и ил. Жидкие, т. с. растворенные в воде материалы, также могут переноситься течением реки. Вода способна и растворять породу, особенно такую мягкую и податливую, как известняк.
Когда река достигает пологой местности, силы потока не всегда хватает для дальнейшей транспортировки собранной породы. Поэтому река постепенно откладывает свою «ношу» на дно. Большие камни оседают быстрее, мелкие ложатся на дно позже.
Отложения равнинной реки образовывают отмели, в свою очередь формирующие сеть мелких, перемещающихся рукавов. Этот процесс называется ветвлением. Очень много разветвляющихся рек в районе Великих равнин в Северной Америке.
Еще одна форма отложения наблюдается, когда река с горной местности стекает на равнину. Она может разлиться и расположить осадки в форме веера. Такого рода отложения называются наносным конусом.
Затапливая окрестные земли, река обычно наслаивает пласты вблизи своих берегов. В результате выстраиваются берега, превышающие уровень равнины. Такие берега называют естественными прирусловыми валами. Очень часто уровень реки, протекающей между такими валами, находится заметно выше уровня равнины.
Сотни лег назад, до строительства высотной Асуанской плотины в Египте, Нил ежегодно затапливал низинные пахотные земли вдоль своих берегов, оставляя слои богатого минералами ила, способствовавшего чрезвычайной плодородности сельскохозяйственных угодий. Не зря древние египтяне поклонялись Нилу как божеству-кормильцу.
Иногда принесенный Нилом ил достигал морского побережья. Там он накапливался, создавая дельту – равнинную местность, где река разливалась по нескольким каналам. От формы дельты Нила, напоминающей греческую большую букву D (дельту), и пошло название такого образования. Сегодня большая часть намытого Нилом ила скапливается на дне озера Насер за Асуанской плотиной. В результате этого береговая линия дельты Нила постепенно отступает.
Реки могут создавать три вида дельт в зависимости от относительной плотности их воды и плотности воды моря, в которое они впадают. Если из-за груза осадков речная вода плотнее морской, то дельта вытягивается. Если речная вода приблизительно одинаковой плотности с морской, образуется конусообразная дельта, подобная нильской. Если же плотность речной воды ниже, то образуется дельта со множеством рукавов. Она называется пальцеобразной; например, дельта Миссисипи в Луизиане.
На аэроснимках больших рек, таких как Амазонка и Миссисипи, виден конус обесцвеченной воды, протянувшийся в океан. Обесцвечивание вызвано взвешенными частицами грунта. Ежегодно Миссисипи приносит в Мексиканский залив около 700 тонн материалов. За миллионы лет эти океанские осадки, вымытые из старых горных пород, уплотняются и отвердевают, образуя новую осадочную породу.
Большая часть осадков вымывается с поверхности материков. Ежегодно реки мира приносят в море около 8000 млн. тонн материалов, при этапом теряется 77 тонн почвы па 1 км2. Например, реки США перемещают достаточно материала для того, чтобы понизить ландшафт страны по меньшей мере на 6 см каждые 1000 лег.
Если бы эрозия длилась с той же скоростью в течение каких-нибудь 14 млн. лет, вся территория США оказалась бы па одном уровне с морем. К счастью, ландшафт сформировался вследствие других геологических процессов, поэтому не похоже, чтобы материки исчезли под океанской водой в результате эрозии.
Встречая па своем пути преграду, например гору, вода меняет свое направление в обход препятствия. Равнинная река может делать плавные, правильной формы повороты – меандры. Название «меандр», впервые использованное древними греками, пошло от названия реки Меандр в Трое (современный Большой Мендерес в Турции), которая имеет причудливо извилистую форму.
С внешней стороны меандра река размывает берег, а на внутреннюю намывает песчаные и гравийные осадки. Материал на внешней стенке сдвигается вниз по течению и со временем меандры перемещаются вниз. Поэтому и меандры никогда не стоят па месте, а иногда они полностью отрываются от основного русла реки.
На старых поймах остались следы давних меандров – неглубокие извилистые впадины. Иногда река пробивает новый прямой путь через горловину подковообразного изгиба. Со временем вся вода использует более короткий путь, оставляя дугообразную заводь, известную под названием старица, полностью отрезанной от реки.
Реки составляют важную часть того, что геологи называют водным циклом. Это процесс, начинающийся с испарения морской воды под воздействием солнечного тепла и формирования облаков. Потом они возвращают свою влагу земле в виде осадков (дождя, мокрого снега или снега). Большая их часть выпадает в морс. Остальные попадают па землю, но, стекая с возвышенностей или превращаясь в источник, они со временем возвращаются в море через речную систему.

Долина реки - это узкие и вытянутые в длину, большей частью изви­листые полые формы рельефа, образованные в результате деятельности речного потока. Долины ограничены береговыми склонами, или бортами. Самая низкая точка долины называется дном, верхний край берегового склона - бровкой. Ложе реки, по которому она течет в меженный уро­вень, называется руслом. Во время половодья, то есть с подъемом во­ды, река выходит из русла и затопляет дно долины - пойму.

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОКЕАНОВ И МОРЕЙ

    22)Овра́г — форма рельефа в виде относительно глубоких и крутосклонных незадернованных ложбин, образованных…

Меры борьбы с эрозией

Очень существенно, чтобы борьба с эрозией проводилась не на отдельных небольших участках, а на обширных территориях. Некоторые мероприятия по борьбе с водной и ветровой эрозией почв являются… К таким мероприятиям относятся следующие.

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ЛЕДНИКОВ

ТИПЫ ЛЕДНИКОВ

Антарктический ледник. Антарктида занимает площадь около 15 млн. км2 , из них около 13,2 млн. км2 покрыто льдом. Ледяной покров образует огромное… Хорошо известный шельфовый ледник Росса занимает половину моря Росса и… Гренландский ледник. Гренландия занимает немногим более 2 млн. км2, из которых около 80% покрыты материковым ледником…

– Конец работы –

Используемые теги: Инженерная, геология0.054

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Инженерная геология

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Геология и её разделы: минералогия, петрография, историческая геология, тектоника, инженерная геология, гидрогеология
Геология наука о составе строении и закономерностях развития Земли других планет Солнечной системы и их естественных спутников... В процессе развития и углубления специализации в геологии сформировался ряд... Минералогия раздел геологии изучающий минералы вопросы их генезиса квалификации...

Инженерная геология
Казанский государственный архитектурно строительный университет... Кафедра оснований фундаментов динамики сооружений...

Общая геология. Геология нефти и газа
В зависимости от этого они делятся на глубинные,или интрузивные,и излившиеся или эффузивные. в свою очередь интрузивные породы также подразделяются… Магматические породы отличаются по химическому и минералогическому составу, а… Чем кислее породы тем они светлее. В основных породах возрастает содержание темного силиката-авгита. Поэтому они имеют…

Геология как наука. История геологии. Разделы геологии. Вклад отечественных ученых в развитие геологии.Геология, как наука
Геология наука о происхождении строении и истории развития Земли Изучая г п слагающие земную кору а также происходящие в ней процессы... Разделы геологии... Минералогия р г изучающий минералы как природные образования относительно постоянного хим состава и...

Региональная гидрогеология и инженерная геология. Лекции 4–5
Рисунок Распределение прогнозных ресурсов и разведанных эксплуатационных запасов подземных вод по регионам Казахстана м с... Под обеспеченностью понимается возможность покрытия текущих и перспективных потребностей промышленности и сельского...

Что изучает инженерная геология и в чем состоит необходимость ее знания для инженера-строителя
Современная инженерная геология как наука занимается выявлением всех условий... Три основные задачи инженерной геологии...

Инженерная геология – определение предмета, его цели, задачи, структура. Где, когда и почему зародился предмет.
ИГ отрасль г которая изучает геологические процессы верхних горизонтов земной коры и физико механические свойства горных пород в связи с... ИГ а инж петрология наука о скальных горных породах их минералогическом... Задачи Инженерно геологическое изучение горных пород изучение опасных геологических процессов ОГП...

ОБЩАЯ ИНЖЕНЕРНАЯ ГЕОЛОГИЯ
На сайте allrefs.net читайте: ОБЩАЯ ИНЖЕНЕРНАЯ ГЕОЛОГИЯ.

ИНЖЕНЕРНАЯ ГЕОЛОГИЯ
и науки Российской Федерации... М В Венгерова А С Венгеров ИНЖЕНЕРНАЯ ГЕОЛОГИЯ...

Инженерная геология как наука
Минералами называют однородные по своему составу и строе нию природные химические соединения или элементы образо ванные в результате определенных... Минералы обладают кристаллической структурой или бывают аморфными Большинство... Хим состав кристаллических минералов выражается кристаллохимической формулой которая показывает количественное...

0.034
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • Инженерная геология Федеральное агентство по образованию Российской Федерации... Государственное образовательное учреждение... высшего профессионального обучения...
  • По курсу Инженерная геология Строительство Федеральное агентство по образованию... Саратовский государственный технический... О Д Смилевец...
  • ИНЖЕНЕРНАЯ ГЕОЛОГИЯ Государственное образовательное учреждение... высшего профессионального образования Ижевский государственный технический университет...
  • Введение. Предмет и задачи инженерной геологии Инженерная геология отрасль геологии изучающая Земную кору в связи с... Земная кора твердокаменная оболочка Земли...
  • Геология Классификация минералов... Раздел Самородные элементы и интерметаллические соединения... II Раздел Сульфиды сульфосоли и им подобные соединения...