рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Контрольно-измерительные приборы

Контрольно-измерительные приборы - раздел Высокие технологии, Контрольно- Измерительные Приборы Предпосылками Для Развития Отрасли, Выпуска...

Контрольно- измерительные приборы Предпосылками для развития отрасли, выпускающей контрольно-измерительные приборы (КИП), были некоторые изобретения известных учёных в области измерительных приборов и деятельность ряда предпринимателей по практической реализации данных изобретений, к которым можно отнести следующие исторические факты: итальянский физик Александро Вольта [1745-1827] в 1800 г. изобрёл т.н. "Вольтов столб" - первый источник постоянного тока и ряд электрических приборов (электрофор, электрометр, электроскоп и др.) немецкий физик Генрих Рудольф Герц (Херц) [1857-1894] в 1888 г. изобрел т.н. "Вибратор Герца"; английский физик Оливер Джозеф Лодж [1851-1940] в конце прошлого века построил индикатор на основе когеррера; французский инженер и предприниматель Э. Дюкрете [1844-1915] на рубеже веков был владельцем в Париже одной из крупнейших в то время в мире мастерской по изготовлению научных приборов. По существу, первый контрольно-измерительный прибор был прилюдно продемонстрирован в 1897 г. в Страссбургском университете Карлом Фердинандом Брауном - на экране ЭЛТ демонстрировались изменяющиеся во времени процессы.

После того, как данный генератор ими был продемонстрирован в том же году на конференции Западного побережья, организованной Институтом радиоинженеров (ИРИ), эти два конструктора получили письмо из студии Уолта Диснея, с предложением создать генератор, перекрывающий несколько другой диапазон частот.

Диснею это нужно было для его музыкальной экстравагантной мультипликации под названием "Фантазия", при этом предусматривался новый метод записи звука на плёнке с целью получения стереофонического звучания.

Метод предусматривал использование трёх звуковых дорожек со сжатием амплитуды, для того чтобы они уместились на плёнке, и четвёртой дорожки для декомпрессии. 1. Генераторы: генератор высокой частоты типа ГС-3: 0,075 - 20 МГц; генератор-стандарт сигналов типа ГСС-1 (-2, -3): 0,1 - 20 МГц; генератор ультравысоких частот ГСУ-4: 18 - 100 МГц; звуковой генератор типа ГС-5 (для военной техники - ИРПА): 0,05 - 10 кГц (1,5 Вт); звуковой генератор типа ЗГ-2: до 20 кГц (1,8 Вт). 2. Измерители и индикаторы : вольтамперметр типа АВО-2: 0,2 - 1000 В, 0,2 мА - 1 А, до 500 кОм; - вольтмиллиамперметр типа 5МП: 30 - 300 мА, 3 - 30 В; катодный вольтметр типа ВКС-7: переменные напряжения в диапазоне частот 30 Гц - 100 МГц, пять пределов измерений (1,5, 5, 15, 50, 150 В), входное сопротивление не менее 4 МОм, входная емкость 7 пФ; карманный омметр типа ОК-1 (МОК-2): до 20 кОм (по постоянному току); - измеритель выхода приёмников типа ИВ-3: 0,5 - 300 В; измеритель ёмкости типа ГБЕ-2: 2 - 2000 пФ (на частоте 500 кГц); измеритель модуляции типа ИМ-6: 10 - 100 % (до 30 МГц); измеритель нелинейных искажений типа КМ-4: 0,5 - 50 % (0,1 - 6 кГц); измеритель частоты типа ИЧ-1: 0,01 - 10 кГц (0,5 В); 3. Калибраторы, гетеродинные волномеры : гетеродинный волномер типа ПГВ-1 (ПГВ-2): 1 - 20 МГц (опорные точки с дискретностью через 100 кГц); гетеродинный волномер типа 2ГВД: 1,3 - 30 МГц; гетеродинный волномер типа 2ГВК: 71,5 - 1120 кГц; кварцевый калибратор (опорный гетеродин) типа А-1 [мод. 1941 г.]: 1, 2, 2,5, 3 - 6 МГц (через 1 МГц), 17,5 - 42,5 МГц (через 2,5 МГц); кварцевый калибратор типа КК-1 (КК-2, КК-3): 0,1-10 МГц (с кратностью 100 кГц), 10 - 20 МГц (с кратностью 1 МГц). 4. Испытатель ламп типа ИЛ-8 (для военной техники - ИПР-3): проверка параметров основных типов приёмных и мелких генераторных ламп путём измерения токов в отдельных цепях.

Вольтметр Вольтметр (вольт + гр. μετρ εω измеряю) — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях.

Подключается параллельно нагрузке или источнику электрической энергии.

Классификация: По принципу действия вольтметры разделяются на: электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические; электронные — аналоговые и цифровые По назначению: постоянного тока; переменного тока; импульсные; фазочувствительные; селективные; универсальные По конструкции и способу применения: щитовые; переносные; стационарные Видовые наименования Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ) Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт) Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ) Векторметр — фазочувствительный вольтметр Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия Дxx — электродинамические вольтметры Мxx — магнитоэлектрические вольтметры Сxx — электростатические вольтметры Тxx — термоэлектрические вольтметры Фxx, Щxx — электронные вольтметры Цxx — вольтметры выпрямительного типа Эxx — электромагнитные вольтметры Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094 В2-xx — вольтметры постоянного тока В3-xx — вольтметры переменного тока В4-xx — вольтметры импульсного тока В5-xx — вольтметры фазочувствительные В6-xx — вольтметры селективные В7-xx — вольтметры универсальные Видовые наименования Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ) Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт) Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ) Векторметр — фазочувствительный вольтметр Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия Дxx — электродинамические вольтметры Мxx — магнитоэлектрические вольтметры Сxx — электростатические вольтметры Тxx — термоэлектрические вольтметры Фxx, Щxx — электронные вольтметры Цxx — вольтметры выпрямительного типа Эxx — электромагнитные вольтметры Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094 В2-xx — вольтметры постоянного тока В3-xx — вольтметры переменного тока В4-xx — вольтметры импульсного тока В5-xx — вольтметры фазочувствительные В6-xx — вольтметры селективные В7-xx — вольтметры универсальные Осциллограф Первый осциллограф был изобретён французским физиком Андре Блонделем в 1893 году. Осцилло́граф (лат. oscillo — качаюсь + гр. γραφ ω — пишу) — прибор, предназначенный для исследования электрических сигналов во временно́й области путём визуального наблюдения графика сигнала на экране либо записанного на фотоленте, а также для измерения амплитудных и временны́х параметров сигнала по форме графика.

Современные осциллографы позволяют разворачивать сигнал гигагерцовых частот.

Для разворачивания более высокочастотных сигналов можно использовать стрик-камеры.

Общее описание На рисунке показана передняя панель типичного двухлучевого осциллографа.

Органы управления и индикации Экран Электронно-лучевой осциллограф имеет экран A, на котором отображаются графики входных сигналов.

На экран нанесена разметка в виде сетки.

У цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки.

У аналоговых осциллографов в качестве экрана используется электронно-лучевая трубка с электростатическим отклонением.

Сигнальные входы Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т.д. каналов на входе). Многоканальные осциллографы позволяют одновременно сравнивать сигналы между собой (формы, амплитуды, частоты и пр.) Классификация По назначению и способу вывода измерительной информации Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап европ. языках oscilloscop(e) Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовые осциллографы) — в зап европ. языках oscillograph По способу обработки входного сигнала Аналоговый Цифровой По количеству лучей осциллографы делятся на однолучевые, двухлучевые и т.д. Количество лучей может достигать 16-ти и более.

N-лучевой осциллограф имеет N сигнальных входов и может одновременно отображать на экране N графиков.

Осциллографы с периодической развёрткой делятся на универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

– Конец работы –

Используемые теги: Контрольно-измерительные, боры0.051

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Контрольно-измерительные приборы

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция 16. Теория атома водорода по Бору. Элементы квантовой механики. План лекции 2. Постулаты Бора. Спектр атома водорода по Бору
гл... План лекции... Ядерная модель атома Резерфорда Постулаты Бора Спектр атома водорода по Бору...

Общие сведения о технологическом процессе сборки оптико-электронных приборов. Контрольно-юстировочные приборы
Узел представляет собой конструктивный и сборочный элемент изделия, который может быть собран и проверен самостоятельно и независимо от других узлов… Юстировка – это качественное завершение сборочных операций прибора в… В ряде случаев юстировки представляет собой сложную задачу. Иногда она выполняется в несколько этапов…

Полупроводниковые приборы и электронные лампы
Область n - типа называют отрицательным электродом, а область p - типа - положительным электродом полупроводникового диода. Диод хорошо пропускает ток, когда его отрицательный электрод соединен с… В результате вблизи p - n перехода произойдет накопление положительных и отрицательных зарядов, и поэтому…

Классификация электроизмерительных приборов
Это обозначают условными знаками на шкале прибора, приведенными. На приборах переменного тока указывают номиналь¬ное значение частоты или диапазон… Класс точности прибора обо¬значают числом, равным допускаемой приведенной… Класс точности прибора является его обобщенной метрологической характеристикой.

Электродинамические и электромагнитные измерительные приборы
Принцип действия электродинамических преобразователей основан на взаимодействии магнитных полей токов, протекающих по неподвижной и подвижной… Это создает конструктивные удобства при размещении подвижной части и, кроме… Выполняются неподвижные катушки, как правило, из медного провода. Подвижная катушка 2 выполняется из медного или…

Пути улучшения окружающей среды г.Бор
Такой механизм учета смертности работает на маскировку эффектов, связанных, например, с последствиями испытаний ядерного оружия в атмосфере:… И если о возникновении инфекционных заболеваний требуется сообщать сразу же… Как только список ключевых индикаторов состояния здоровья будет готов, ООН обязан его обнародовать, а каждое…

Электрические измерительные приборы
Тип урока: Урок изучения нового материала Основной метод проведения урока: Эвристическая беседа Оборудование: Соединительные провода, амперметр,… Мотивационный этап: - На уроках физики вы уже сталкивались с измерительными… К этим приборам относятся: амперметр, вольтметр, ваттметр, счетчики и т.д которые используют магнитное, тепловое и…

Электрический ток в вакууме. Электровакуумные приборы
Физической характеристикой вакуума есть соотношение между длиной свободного пробега молекул и размером сосуда, между электродами прибора и т.д.… Так когда же можно считать, что в сосуде создан вакуум? Молекулы воздуха,… И вот наступает момент, когда длина свободного пробега становится равной размерам сосуда: молекула движется от стенки…

Термометры сопротивления и измерительные приборы к ним
При измерении температуры термометр сопротивления погружают в среду, температуру которой необходимо определить. Зная зависимость сопротивления термометра от температуры, можно по изменению… Термометры сопротивления из чистых металлов, получившие наибольшее распространение, изготовляют обычно в виде обмотки…

Автоколлимационные зрительные трубы. Широкоугольные коллиматоры. Ошибки изготовления и положения оптических деталей приборов
Зеркало располагается в параллельном пучке между линзами О1 и О2 под углом 45° и оптической оси трубы. Освещение производят при помощи третьей линзы О3, в фокусе которой помещают… ДИНАМЕТРЫ. Динаметр применяют для измерения размеров выходных зрачков оптических приборов, а также удаления зрачка…

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • ИСКУССТВО ПОДБОРА ПЕРСОНАЛА На сайте allrefs.net читайте: "ИСКУССТВО ПОДБОРА ПЕРСОНАЛА"
  • ИСКУССТВО ПОДБОРА ПЕРСОНАЛА На сайте allrefs.net читайте: "ИСКУССТВО ПОДБОРА ПЕРСОНАЛА"
  • Коммерческий анализ ассортимента бытовых электрохолодильных приборов, реализуемых торговой сетью РБ Вентиляция предусмотрена не только в холодильнике, но и в морозильной камере. Контроль влажности и регулировка температуры позволяют создать… Количество сохраняемых продуктов определяется общим объемом камеры, объемом… Важно учитывать и время достижения установленной температуры.
  • Вакуумные приборы Наибольший ток, возможный при данной температуре катода, называют током насыщения. График (рис. 1.2) называют вольтамперной характеристикой диода.… Поэтому вольт- амперная характеристика диода начинается немного левее начала… Очевидно, что для увеличения тока насыщения необходимо увеличить число электронов, вылетающих за 1 с. из катода, т. е.…
  • Гидравлический расчет трубопроводной сети. Подбор центробежного насоса Она показывает, что данный центробежный насос, работая на водопроводную сеть, развивает напор НН, создает подачу QH, затрачивая определенную… Исходные данные для РГР №2 Расчетный расход нефтепродукта: Q1 = 80+0,1.N.n,… Для этого необходимо определить число Рейнольдса (Re) и абсолютную эквивалентную шероховатость стенок трубопровода.