рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Между ошибками эконометрической модели

Между ошибками эконометрической модели - раздел Экономика, Эконометрика   Причиной Появления Ошибки Явилось Не Вполне Обоснованное Пред...

 

Причиной появления ошибки явилось не вполне обоснованное предположение о том, что данные на интервалах (1, Х1) и (Х1, Х2) описываются одной и той же моделью.

Аналогично, автокорреляция в ряду ошибки может возникнуть, если для описания характера взаимодействия между переменными у и х вместо квадратической зависимости использовать линейную (рис. 2.1). В этом случае расчетные значения функции у=a0+a1x на интервале (1, Х1) будут превышать фактические уровни переменной у, а на интервале (Х1, Х2), наоборот, будет иметь место обратная ситуация, когда фактические значения зависимой переменой будут превосходить ее расчетные значения.

На практическом примере несложно убедиться, что коэффициент автокорреляции первого порядка для ошибки линейной модели в этом случае также будет значимым, т. е. ее ковариационная матрица – отличной от диагональной.

Часто появление зависимости между ошибками вызывается невключением в модель какой-либо объясняющей переменной, особенно если ее последовательные значения были зависимы между собой. В такой ситуации ошибка частично вберет в себя информацию – необъясненную изменчивость, обусловленную невключением в состав модели объясняющей переменной, в том числе и свойство зависимости последовательных ее значений.

Однако, как это было отмечено в разделе 3.1, даже если какие-либо подозрения относительно наличия автокорреляции между ошибками существуют априорно, то вид ковариационной матрицы ошибки и количественные характеристики ее элементов с более или менее приемлемой точностью априорно предсказать практически невозможно. Вследствие этого обобщенные МНК и ММП для оценки значений коэффициентов эконометрической модели в прямом виде не могут быть реализованы. В таком случае исследователи обычно применяют некоторые приемы, позволяющие получить более или менее удовлетворительную оценку ковариационной матрицы ошибки, ее некоторое приближение, которое можно было бы использовать в обобщенных методах оценивания. Некоторые из таких приемов будут рассмотрены в данном разделе на примере МНК.

Можно выделить два основных практических подхода к оценке недиагональной ковариационной матрицы ошибок эконометрической модели, отражающей существование корреляционной зависимости между ее значениями. Первый из них не требует использования предварительной информации относительно характера взаимосвязей между ее последовательными значениями et, et+1, et+2,... . Согласно этому подходу матрица Cov(e), рассматриваемая как оценка ковариационной матрицы истинной ошибки модели Cov(e), находится эмпирически путем последовательного приближения по результатам этапов расчетов по построению промежуточных вариантов эконометрических моделей.

Первый этап полностью соответствует процедуре построения эконометрической модели, рассмотренной в главах 1 и 2. Согласно ему, на основании исходных данных – вектора у и матрицы Х – формируется уравнение эконометрической модели, затем с помощью МНК оцениваются ее коэффициенты, определяется вектор фактической ошибки е, значения которого проверяются, например, с помощью критерия Дарбина-Уотсона на наличие автокорреляции.

В том случае если факт корреляции установлен, то на основе эмпирического ряда ошибки е1, е2,..., еТ оцениваются элементы ее ковариационной или корреляционной матрицы на основе следующих общих выражений:

 

 

На практике обычно бывает достаточно оценить два-три выборочных коэффициента корреляции, поскольку взаимосвязь между значениями ошибки с увеличением сдвига k резко ослабевает и значения коэффициентов r4, r5,... cтановятся практически не отличимыми от нуля.

На втором этапе определенную таким образом либо ковариационную матрицу фактической ошибки We, либо ее корреляционную матрицу Se используют для оценки коэффициентов той же эконометрической модели с помощью обобщенного МНК (выражения (3.11), (3.13)). Далее вычисляется новый ряд фактической ошибки, происходит его проверка на наличие автокорреляции и, в случае подтверждения этой гипотезы, определяются новые матрицы We или Se. Затем с помощью обобщенного МНК строится третий вариант эконометрической модели и т. д.

Процедура построения модели завершается, если критерий Дарбина-Уотсона не подтверждает наличие автокорреляции в ряду фактической ошибки очередного варианта эконометрической модели. На практике для получения варианта модели с некоррелированной ошибкой часто достаточно провести одну итерацию. Вследствие этого такой подход получил название “двухшагового МНК”.

Подтверждением эффективности такого подхода является уменьшение дисперсий коэффициентов эконометрической модели каждого следующего варианта по сравнению с предыдущим, обычно наблюдаемое на практике. Напомним, что значения этих дисперсий рассчитываются как диагональные элементы матриц, определяемых выражениями (2.18) и (3.15).

Явление уменьшения дисперсий коэффициентов последовательных вариантов эконометрической модели может быть обнаружено на основе использования критерия Фишера для сумм элементов ковариационных матриц оценок коэффициентов модели двух последовательных ее вариантов. Дело в том, что сумма элементов матрицы Cov(a), рассчитываемой согласно выражениям (2.18) для МНК и (3.15) для обобщенного МНК, выражает дисперсию суммы оценок коэффициентов модели. В этом случае, если выполняется условие

 

>F*(T–n–1, T–n–1, p*), (3.24)

 

где sm2 – сумма элементов ковариационной матрицы оценок Cov(a) на m-м шаге расчетов; F*(T–n–1, T– n–1, p*) – табличное значение критерия Фишера для числа степеней свободы n1=n2=T– n–1 и уровне доверительной вероятности p*, то гипотезу о том, что дисперсия суммы оценок коэффициентов модели уменьшилась на m-м шаге расчетов по сравнению с m–1, следует считать подтвержденной.

Заметим, что на практике вместо суммы элементов ковариационной матрицы оценок коэффициентов модели при определении их эффективности можно использовать фактическую дисперсию модели. Например, для МНК Cov(a)=se2×(Х¢Х)–1. Поскольку матрица Х¢Х постоянна, то отличия дисперсий коэффициентов полностью определяются значением se2.

При сопоставлении дисперсий оценок коэффициентов, полученных с помощью обобщенного МНК, подобную замену теоретически нельзя использовать, поскольку в формировании их ковариационной матрицы принимает участие корреляционная матрица ошибок (Cov(a)=se2×(Х¢S–1Х)–1). Однако, если допустить, что на m-м шаге расчетов значения коэффициентов корреляции изменились не слишком значительно по сравнению m–1-м шагом, то данной некорректностью можно пренебречь.

Другая группа подходов к построению эконометрических моделей с эффективными оценками коэффициентов при невыполнении условия Cov(e)=s2×Е основана на использовании априорной информации относительно возможного вида ковариационной матрицы ошибок. Эта информация может вытекать из анализа закономерностей измерения переменных модели, характера их взаимосвязей, формы самой модели и т. п.

Достаточно часто, предвидя появление ошибки спецификации модели (например, исходя из некоторого несоответствия ее уравнения эмпирическому графику входящих в нее переменных), исследователи заранее предполагают, что значения ошибки связаны между собой автокорреляционной зависимостью первого порядка

 

et =r1et1+x t , (3.25)

 

где r1 – коэффициент автокорреляции ошибки et первого порядка; xt – ошибка модели (3.25) с нулевым средним и конечной дисперсией sx2, которая неизвестна.

В отношении ошибки xt обычно предполагают выполнение следующих свойств на интервале (1,Т):

sx2= const;

Cov(x) = sx2 Е; (3.26)

Несложно показать, что при выполнении условия (3.25) ковариационная матрица ошибки эконометрической модели будет иметь следующий вид:

 
 


Cov(e) =W = se2 S = se 2

 

Чтобы показать справедливость выражения (3.27), последовательно определим ковариации ряда et с рядами e t–1, e t–2 и т. д. Для сначала этого умножим левую и правую части выражения (3.25) на et–1, полученный результат просуммируем по t и далее разделим на T–2. В итоге с учетом независимости переменных e t–1 и xt получим

 

cov(e t , e t1)=r1se2. (3.28)

 

Проведем аналогичную операцию, умножив левую и правую части выражения (3.25) на e t–2. Получим

 

cov(et , e t2)=r1 cov(et , e t1)=r12se2 (3.29)

и т. д.

cov(et , etk )=r1kse2.

 

Таким образом, при выполнении условия (3.25) корреляционная матрица истинной ошибки эконометрической модели оказывается определенной следующим выражением:

 
 


S =

 

в котором величина r1 однако остается неизвестной.

Вместе с тем, очевидно, что “хорошая” оценка r1 коэффициента корреляции r1 должна обеспечивать получение эффективных оценок коэффициентов эконометрической модели a0, a1,... an. Если предположить, что: а) как и ранее, эффективные оценки характеризуются минимальным значением суммы элементов ковариационной матрицы Cov(a); б) эта сумма (дисперсия) является непрерывной выпуклой функцией по r1, минимум которой соответствует “хорошей” оценке коэффициента r1, то теоретически эту оценку, как и эффективные оценки a0, a1,... an, можно определить с помощью несложной итеративной процедуры, в основе которой лежит обобщенный МНК. Ее суть состоит в следующем. Задается начальное значение r10 и на его основе (согласно выражению (3.27)) определяется Cov0(e). Далее с использованием обобщенного МНК (выражение (3.16)) определяются оценки a00, a10,... an0 и их ковариационная матрица Cov0(a) (выражение (3.15)).

На втором шаге определяется значение r11=r10+Dr, где Dr – выбранный прирост оценки коэффициента автокорреляции, а затем повторяется последовательность расчетов первого шага.

Если r10 не являлось искомым оптимальным значением коэффициента автокорреляции, то при правильно выбранном знаке Dr сумма элементов Cov1(a) будет меньше соответствующей характеристики матрицы Cov0(a).

Однако изложенная процедура практически не применяется. Причинами этого являются неизвестный характер зависимости суммы элементов ковариационной матрицы Cov(a) от значений r1 (эта характеристика вообще может быть не слишком чувствительна к изменениям r1); неизбежные ошибки округления, которые приводят к смещению находимых оценок коэффициентов a00, a10,... an0; большой объем вычислений по каждому этапу процедуры. Все это делает ее трудно реализуемой даже на современных компьютерных системах.

В эконометрике обычно для получения эффективных оценок коэффициентов модели с коррелирующими остатками в предположении о справедливости зависимости (3.25) используются несколько другие подходы, предполагающие необходимость преобразования уравнения самой модели. Рассмотрим эти подходы более подробно.

Представим эконометрическую модель с учетом условия (3.25) в виде следующей системы уравнений:

 

уt =a0+a1x1t +...+an xnt+et ;

et=r1et–1+x t. (3.31)

 

Поскольку et–1=уt–1a0a1x1,t–1–...–anxn,t–1, то систему (3.31) можно выразить единым уравнением

 

уt =r1уt–1+(1–r1)a0 +a1 x1tr1a1x1,t–1+...+an xnt r1an xn,t–1+xt . (3.32)

 

Критерием при определении неизвестных параметров выражения (3.31) является минимум суммы квадратов xt .

Обозначим произведения коэффициентов (1–r1)a0, r1a1,..., r1an как b0, b1,... bn. Тогда вместо выражения (3.32) можно записать

 

уt =r1уt–1+b0 +a1 x1t b1 x1,t– 1+...+an xnt bn xn, t– 1+xt, (3.33)

 

где b0 =(1–r1)a0, b1 =r1a1,..., bn =r1an . (3.34)

Из выражения (3.33) непосредственно вытекает, что, поскольку обычный МНК в общем случае не гарантирует выполнения условия (3.34), для оценки коэффициентов этой модели должен быть применен МНК, учитывающий эти нелинейные соотношения. МНК, учитывающий ограничения на параметры, да еще нелинейного вида, достаточно трудоемок с вычислительной точки зрения.

Вследствие этого на практике в таких ситуациях более широкое применение нашел так называемый двухшаговый метод наименьших квадратов, предложенный Дарбином (двухшаговый МНК Дарбина). Его суть состоит в следующем. На первом шаге, применяя обыкновенный МНК для оценки коэффициентов модели (3.33), определяют r1 – оценку коэффициента при уt–1. Далее формируются новые зависимая и независимые переменные ut=уtr1уt–1; vit=xit r1xi,t–1 , i=1,2,..., n; t=1,2,..., T–1, зависимость между которыми выражается линейной эконометрической моделью следующего вида:

 

ut=b0+ a1v1t +...+anvnt +wt . (3.35)

 

где коэффициенты b0, a1,..., an являются оценками соответствующих коэффициентов модели b0, a1,..., an, wt – фактическая ошибка модели.

Эти оценки определяются с помощью обычного МНК на втором шаге расчетов.

Метод Дарбина легко распространяется на ситуации, характеризующиеся наличием автокорреляционной зависимости между значениями ошибки более высокого порядка. Например, для автокорреляции второго порядка модель, связывающая текущие значения ошибки с двумя предыдущими, представляется в следующем виде:

et=g1et1+g2et2+x t. (3.36)

 

где g1 и g2 – коэффициенты модели автокорреляции, отражающие характер зависимости текущего значения ошибки et от ее предшествующих значений et–1 и et–2. Оценки этих коэффициентов с1 и с2 определяются на основании значений выборочных коэффициентов автокорреляции r1 и r2 – первого и второго порядка соответственно.

В этом случае по аналогии с выражением (3.32) можно записать

уt =с1уt–1+с2уt– 2+a1x1t+...+anxnt+(1–с1с2)a0с1a1x1,t–1–...–с1anxn,t–-1 –с2a1x1,t–2 –...–с2anxn,t–2+wt. (3.37)

 

Применение двухшагового метода Дарбина к оценке коэффициентов модели (3.37) позволяет с помощью обыкновенного МНК на первом шаге определить оценки коэффициентов с1 и с2 при переменных уt–1 и уt–2 этой модели. Далее, как и в предыдущем случае, формируются новые переменные ut=уtс1уt–1с2уt–2; vit=xitс1xi,t–1–с2xi,t–2, i=1,2,..., n; t=1,2,..., T–1, и на втором шаге оценки коэффициентов исходной модели и a0, a1,... an находятся опять же с помощью обыкновенного МНК, как и коэффициенты модели (3.35).

Отметим, что автокорреляционная зависимость ошибок с порядком более двух практически не встречается. В большинстве случаев порядок автокорреляции равен единице.

Заметим также, что корректность построенной модели в данном случае может быть определена на основе критерия Дарбина-Уотсона, рассчитываемого для остатков модели (3.35).

– Конец работы –

Эта тема принадлежит разделу:

Эконометрика

Российская экономическая академия имени Г В Плеханова.. Эконометрика Москва..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Между ошибками эконометрической модели

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные этапы построения эконометрической модели
Построение эконометрической модели является центральной проблемой любого эконометрического исследования, поскольку ее “качество” непосредственно определяет достоверность и обоснованность результато

Особенности обоснования формы эконометрической модели
Основные подходы к решению проблем первого этапа исследования в значительной степени базируются на методах содержательного анализа закономерностей рассматриваемых процессов, подкрепляемых по мере н

Методы отбора факторов
“Оптимальный” состав факторов, включаемых в эконометрическую модель, является одним из основных условий ее “хорошего” качества, понимаемого и как соответствие формы модели теоретической концепции,

Если имеет место соотношение
ti £t*, (1.26)   то влияние фактора хi на переменную у можно признать незначимым (недостаточно значимым

Характеристики и критерии качества эконометрических моделей
Выявление лучшего варианта эконометрической модели обычно осуществляется путем сравнения соответствующих им качественных характеристик, которые можно рассчитать на основе исходной статистической ин

Качество оценок параметров эконометрических моделей
Эконометрическая модель считается построенной, когда определены значения оценок ее параметров. Исходными данными при этом являются наблюдаемые значения (измеренные уровни) зависимого показателя (пе

Процедура оценки параметров по методу наименьших квадратов
Метод наименьших квадратов (МНК) является одним из наиболее разработанных и распространенных вследствие своей относительной простоты и эффективности методов оценки параметров линейных эконометричес

Сумма квадратов значений фактической ошибки модели должна быть минимальной
Иными словами, найденные с помощью МНК оценки a0, a1,..., an, обеспечивают минимум следующей квадратичной формы на множестве всех других комбин

Детерминированные независимые переменные
В этом случае матрица Х представляет собой матрицу, состоящую из констант, и элементы матриц (Х¢Х) и (Х

Стохастические независимые переменные
В эконометрических исследованиях в качестве значений независимых переменных часто приходится использовать исходные данные, которые нельзя интерпретировать как детерминированные величины, поскольку

Особенности проверки качества оценок МНК
Проверка условий, выполнение которых свидетельствует о “высоком” качестве полученных оценок параметров эконометрической модели (а, следовательно, в значительной степени и самой модели), на практике

Свойства фактической ошибки эконометрической модели
В данном разделе рассматриваются некоторые подходы к проверке наличия стандартных свойств (2.20)–(2.23) у “истинной” ошибки эконометрической модели et на основе анализа соответств

Тестирование свойств фактической ошибки эконометрической модели
На практике справедливость предпосылок (2.21) и (2.22) можно подтвердить или опровергнуть только путем анализа свойств фактической ошибки еt, после оценки ее значений. В таком слу

Оценка дисперсии истинной ошибки модели
На практике вместо дисперсии истинной ошибки se2, значение которой не известно, используется ее оценка, рассчитываемая на основе фактических значений ошибки еt

Особенности проверки обратимости матрицы Х¢Х
Как было отмечено ранее, при наличии достаточно сильной корреляции между двумя или несколькими переменными хi, i=1,2,..., n, могут возникнуть трудности, связа

Оценка последствий неправильного выбора состава независимых переменных модели
В данном разделе рассмотрим особенности влияния на качество параметров эконометрической модели ошибок, допущенных на этапе содержательного анализа при выборе состава независимых переменных (факторо

Оценивание параметров эконометрической модели с учетом ограничений
При нахождении оценок параметров линейной эконометрической модели с использованием МНК предполагалось, что их значения не связаны никакими ограничениями. Вместе с тем, исходные предпосылки, лежащие

Предпосылки метода максимального правдоподобия
Достаточно широкое распространение при оценке параметров моделей получил и метод максимального правдоподобия, базирующийся на критерии (принципе), согласно которому оптимальные оценки параметров об

Процедура получения оценок максимального правдоподобия
Целевая функция типа (2.109) называется функцией максимального правдоподобия. Несложно заметить, что оптимальные значения оценок параметров a0*, a1

Обобщенный метод наименьших квадратов
Рассмотрим основные последствия нарушения условия (2.21) для оценок параметров эконометрической модели, полученных с использованием “классических” методов оценивания, например, МНК. Как бы

Обобщенный метод максимального правдоподобия
В обобщенном ММП предполагается, что ошибка модели подчиняется нормальному закону распределения с ковариационной матрицей W, определенной выражением либо (3.1), либо (3.4),

Эконометрические модели с коррелирующими ошибками
Причины появления корреляционной зависимости между разновременными значениями ошибки эконометрической модели, вызывающие отличие вида их ковариационной матрицы от диагональной, могут быть разными.

Эконометрические модели с гетероскедастичными ошибками
Причиной непостоянства дисперсии (гетероскедастичность ошибки) эконометрической модели часто является ее зависимость от масштаба рассматриваемых явлений. В эконометрическую модель ошибка входит как

Метод инструментальных переменных
Для получения несмещенных (по крайней мере состоятельных) оценок параметров эконометрических моделей в ситуациях, когда имеют место (теоретически допускаются) корреляционные взаимосвязи между незав

Рекуррентные методы оценки параметров эконометрических моделей
Использование рекуррентных методов при оценке параметров эконометрических моделей позволяет избежать обращения матрицы X¢X и тем самым, появлени

Метод главных компонент
Метод главных компонент является одним из самых эффективных вычислительных средств, позволяющих оценить коэффициенты эконометрической модели при плохой обусловленности матрицы (X

Изменчивости главных компонент
 

Методы оценки коэффициентов моделей с лаговыми независимыми переменными
Эконометрические модели с лаговыми независимыми переменными учитывают влияние на переменную уt уровней объясняющих факторов, относящихся к прошедшим моментам времени t–1,

Проблемы построения моделей с лаговыми зависимыми переменными
Общий вид линейной эконометрической модели с лаговыми зависимыми переменными может быть выражен следующим уравнением:  

Основные подходы к оценке коэффициентов эконометрической модели, содержащей лаговые зависимые переменные
Из материала предыдущего раздела вытекает, что эконометрические модели, содержащие в правой части лаговые зависимые переменные, неоднородны по своим свойствам. В основном это обусловлено появлением

Особенности использования инструментальных переменных в оценках параметров моделей
В научных публикациях можно встретить рекомендации выбирать в качестве значений переменной (обозначим их как ) расчетные значения переменно

Стационарные временные ряды
Широкий круг социально-экономических, технических и естественнонаучных процессов часто представляется набором последовательных значений показателя у1, у2,...,

Параметрические тесты стационарности
Из определения стационарного процесса второго порядка, формализованного с помощью выражений (6.2)–(6.4), непосредственно вытекает, что очевидными параметрическими критериями при проверке реального

Непараметрические тесты стационарности
Параметрические критерии проверки стационарности достаточно неудобны в практических исследованиях и весьма ограничены в применении из-за своих достаточно строгих предположений относительно нормальн

Преобразование нестационарных временных рядов в стационарные
Реальные процессы свойством стационарности второго порядка могут и не обладать. Однако с помощью достаточно несложных преобразований часто удается привести наблюдаемый ряд к стационарному процессу.

Модели скользящего среднего
В моделях скользящего среднего текущее значение стационарного случайного процесса второго порядка yt представляется в виде линейной комбинации текущего и прошедших значений ошибки

Модели временных рядов с сезонными колебаниями
Характерной особенностью некоторых социально-экономических процессов, представленных временными рядами, является ярко выраженная периодичность. Например, интенсивность транспортных поездок (особенн

Переход от стационарных моделей к нестационарным
В тех случаях, когда модель авторегрессии и скользящего среднего применялась для описания процесса, приведенного к стационарному, например, с помощью одного из преобразований (6.39)–(6.42), процесс

Объекты исследования финансовой эконометрики
Временные ряды специфических (финансовых) показателей являются объектом исследования одного из самых “древних” направлений эконометрики – финансовой эконометрики, истоки которого лежат в XVI веке.

Гипотезы финансовой эконометрики
Различные классы моделей финансовой эконометрики базируются на тех или иных предположениях относительно корреляционных взаимосвязей, характерных для наблюдаемого временного ряда определенного финан

Тестирование финансовых процессов
Для выявления соответствия свойств реального финансового процесса какой-либо из версий гипотезы случайного блуждания, каждая из которых в свою очередь характеризуется специфической формой ортогонал

Модели ГСБ-1. Броуновское движение
Одной из достаточно широко известных моделей финансовой эконометрики, описывающих процессы с непрерывным временем, удовлетворяющие предпосылкам ГСБ-1, является модель, получившая в научной литерату

Модели финансовых процессов с изменяющейся вариацией (ГСБ-2 и ГСБ-3)
В последние два десятилетия в финансовой эконометрике бурно развивается направление, связанное с разработкой моделей процессов изменения цен, характерной чертой которых является изменяющаяся диспер

Модели процессов со скачками вариации
Для описания процессов с редкими скачками вариации, вызванными в основном экстраординарными событиями, обычно используются модели, в которых дополнительно к выражению (7.101) вводится ограничение н

Модели процессов с зависимой вариацией
Привязка изменений вариации цен к экстраординарным событиям не выглядит достаточно реалистично, хотя бы по той причине, что такого рода события возникают достаточно редко и они не в полной мере объ

Методы оценки параметров модели с изменяющейся вариацией
В общем случае определение параметров оценок моделей с изменяющейся вариацией является более сложной проблемой, чем оценка параметров моделей с постоянной вариацией. Дело в том, что эффекты, обусло

Модели временных рядов финансовых показателей с нелинейными структурами
Обобщая изложенный в главе VII материал, отметим, что в предыдущих разделах были рассмотрены модели с линейной структурой условного математического ожидания, в которых этот показатель был выражен в

Оценки параметров распределения отношения SR
Заметим, что ковариация случайных величин At, At+1 может быть определена на основе следующего выражения:  

Параметры распределения выборочной дисперсии
  Для случайной величины Х, распределенной по нормальному закону с математическим ожиданием M[X] и дисперсией sx2, выборочная дисперс

Оценка параметров распределений функциональных зависимостей случайных величин
Предположим, что между переменными у и х1, х2,..., xn существует функциональная связь   y=f(

Особенности систем взаимозависимых моделей
При формировании и построении эконометрических моделей в предыдущих разделах предполагалось, что между независимыми переменными х1t,..., хпt и зависимой п

Формы представления систем взаимозависимых эконометрических моделей
Собрав по разные стороны знака равенства переменные уit и хjt и ошибки eit, i=1, 2,..., т; j=1, 2,..., n; представи

Косвенный метод оценки коэффициентов структурной формы систем взаимозависимых эконометрических моделей
В разделе 8.2. было показано, что использование МНК приводит к смещению оценок коэффициентов только структурной формы модели. В силу статистической независимости экзогенных переменных и ошибок стру

Оценивание параметров структурной формы на основе двухшагового МНК с использованием инструментальных переменных
Двухшаговый МНК является одним из наиболее “популярных” методов оценки параметров моделей структурной формы. Причем обычно он используется в случае изолированного рассмотрения каждой из моделей сис

Первый шаг.
На основании выражения   =X×(X¢&t

Второй шаг.
Заметим, что матрица значений независимых переменных структурной формы модели (8.49) может быть представлена в виде объединения матриц Y1 и Х

Оценки параметров системы взаимозависимых эконометрических моделей с использованием трехшагового МНК
Как было отмечено в предыдущем разделе, наличие корреляционных связей между ошибками различных эконометрических моделей, входящих во взаимозависимую систему, ведет к потере свойства эффективности о

Этап 3.
С помощью обобщенного МНК (выражение (8.79)) определяются “окончательные” оценки коэффициентов структурной формы всей системы взаимозависимых эконометрических моделей, которые теоретически при нали

Причины изменчивости структуры модели
В предыдущих разделах учебника рассматривались эконометрические модели, значения коэффициентов которых предполагались постоянными на всем рассматриваемом временном интервале t=1,2,..., Т

Тестирование изменчивости структуры эконометрической модели
Основная идея тестирования изменчивости коэффициентов эконометрической модели, имеющей систематический характер, состоит в проверке свойства случайности кумулятивной суммы ее ошибок при увеличении

Стандартизованных ошибок модели
  Таким образом, для любого r для эконометрической модели с постоянной структурой с п независимыми переменными имеет место следующее вероятностное условие, определяющее

Эконометрические модели с переключениями
Эконометрические модели линейного типа с переключениями, т. е. со скачкообразными изменениями коэффициентов в точках t1, t2,... tп–1

Эконометрические модели с эволюционными изменениями коэффициентов
Модель с эволюционными изменениями коэффициентов в общем случае имеет следующий вид:   где ai(t), i=0,..., n – оценки коэффициентов мод

Эконометрические модели с ошибками в переменных
В общем случае следует разделять три ситуации, связанные с ошибками переменных эконометрической модели: ошибки имеют место у зависимой переменной, у независимых переменных и у тех и других вместе в

Модели с фиктивными независимыми переменными
Фиктивные переменные вводятся в эконометрическую модель обычно с целью учета воздействия качественных аспектов на закономерности развития рассматриваемых процессов. К таким аспектам, например, отно

Модели с дискретными зависимыми переменными
Как следует из рассмотренного в предыдущих разделах материалов, в эконометрических исследованиях обычно предполагается, что результирующий показатель yt, является количественной в

Модели бинарного выбора
Модели бинарного выбора широко используются в экономических и социальных исследованиях, особенно в экономике труда, при проведении анализа на микро-уровне. Покажем их специфические свойства на прим

Двумерные и многомерные probit-модели
Probit-модели могут быть могут быть использованы для определения вероятностей сложных событий, выражаемых в виде комбинаций некоторых наборов простых событий, каждое из кото

Многомерные модели бинарного выбора с цензурированием
Бывают ситуации, когда наблюдаемые переменные в двумерной probit-модели цензурируют одна другую. Например, при оценке возможности кредитования Бойз (Boyes et al., 1989) анализировал данные п

Модели множественного выбора
От многомерных probit-моделей отличаются модели множественного выбора. Многомерные probit-модели предполагают принятие нескольких решений, каждое из которых заключается в выборе одног

Гнездовые logit-модели (nested logit-models)
Как было отмечено, в условной logit-модели ошибки обычно предполагаются гомоскедастичными. Для практики это предположение часто является слишком строгим. Например, в случае выбора одного из

Модели счетных данных
В практических исследованиях достаточно часто приходится сталкиваться с зависимыми переменными, которые представляют собой результаты подсчетов. Примерами таких переменных являются число выданных з

Отрицательная биномиальная модель
Как уже отмечалось, в пуассоновской модели предполагается, что математическое ожидание и дисперсия числа событий уt равны друг другу. Это свойство существенно ограничивает ее прим

Модель преодоления препятствий (hurdle-model)
Данные модели предназначены для описания процессов, нулевые уровни (значения) которых выражают принципиально другое содержание, по сравнению с положительными, которые, как и в рассмотренных ранее м

Модели с ограниченными зависимыми переменными
В практике социально-экономических исследований на микро-уровне достаточно часто возникают ситуации, когда зависимая переменная является количественной и непрерывной, т. е. удовлетворяет предпосылк

Модели усеченных выборок
Предположим, усеченное распределение является частью неусеченного распределения, которая находится выше или ниже определенного порогового значения. Плотность непрерывной случайной переменн

Модели цензурированных выборок
Напомним, что в случае цензурирования зависимой переменной yt вместо ее значений выше (или ниже) определенного уровня рассматривается сам этот уровень. Например, если спр

Цензурированная модель (tobit-модель)
Для описания зависимости цензурированной переменной yt от влияющих на нее факторов обычно используется так называемая tobit-модель. Tobi

Модели случайно усеченных выборок (selection-model)
Предположим, что переменные у и z имеют двумерное распределение с коэффициентом корреляции r. Найдем распределение у по случайной выборке (у, z) условии, ч

Метод максимального правдоподобия
Из-за специфических свойств моделей с дискретными и ограниченными зависимыми переменными, метод максимального правдоподобия имеет некоторые особенности. Покажем их на примере моделей бинарного выбо

Метод максимального счета (MSCORE)
Рассмотрим особенности метода максимального счета, применяемого наряду с методом максимального правдоподобия для оценки параметров модели бинарного выбора. Этот метод использует критерий,

Особенности оценки параметров нелинейных моделей
Нелинейная модель, а точнее нелинеаризуемая форма основного уравнения эконометрической модели, создает существенные трудности при оценке значений ее параметров. Кроме того, некоторые проблемы в это

Метод прямого поиска
Использование метода прямого поиска при нелинейном оценивании имеет определенные как преимущества, так и недостатки по сравнению с другими методами. Его преимущества обусловлены достаточно несложно

Методы оценки параметров, основанные на линейной аппроксимации модели
В основе этой группы методов лежит идея представления нелинейного функционала эконометрической модели f(a, x) в произвольной точке

Методы, предполагающие линеаризацию целевой функции
В основе методов оценки параметров эконометрической модели, предполагающих линеаризацию целевой функции, т. е. суммы квадратов ошибки модели S2(a,

Качественные характеристики оценок параметров нелинейных эконометрических моделей
Помимо определения точечных значений оценок параметров нелинейных эконометрических моделей в эконометрических исследованиях большое внимание уделяется и поиску их интервальных характеристик, по вел

Особенности эконометрического прогнозирования
Прогнозирование является одной из основных сфер практического применения эконометрических моделей. Эконометрические прогнозные исследования, начало которым было положено в конце 20-х годов ХХ-го ст

Методы оценки дисперсии прогноза при детерминированном прогнозном фоне
Рассмотрим, не прибегая к излишней математической строгости, сначала общий подход к оценке дисперсии прогноза . Без ограничения общности предположим, что прогнозы получены с использованием линейной

Методы оценки дисперсии прогноза при случайном прогнозном фоне
При случайном прогнозном фоне обычно предполагается, что значения независимых факторов в будущие моменты времени T+k являются случайными величинами, которые можно представить в виде с

Оценка точечных прогнозов
Из выражения (12.35) следует, что прогнозное значение показателя уT(1), т. е. на один шаг вперед, может быть определено как условное математическое ожидание переменной уT

Проблемы оценки дисперсий прогнозов
Вместе с тем оценка дисперсий таких прогнозов представляет собой достаточно сложную проблему, корректное решение которой в аналитическом виде еще не получено. Раскроем суть этой проблемы с учетом р

Оценки дисперсий прогнозов при детерминированных параметрах моделей
В этой связи, в научной литературе обычно рассматриваются методы оценки дисперсий прогнозов процессов, представленных в виде временных рядов, не учитывающие ошибки оценок коэффициентов, описывающих

Модель СС(1)
Прогнозируя на момент Т+1 на основе модели СС(1)   получим следующее прогнозное значение рассматриваемой переменной y:   Поскольку матема

Модель арсс(1,1)
Модель АРСС(1,1), являющуюся комбинацией рассмотренных выше моделей АР(1) и СС(1), представим в следующем виде:     Несложно заметить, что прогнозное значение п

Программа дисциплины
“ЭКОНОМЕТРИКА” Составители: д.э.н., профессор ТИХОМИРОВ Н.П. к.э.н., доцент ДОРОХИНА Е.Ю.   I.Организационно-методический раздел

Модели финансовой эконометрики
Объекты изучения финансовой эконометрики. Первичный и вторичный финансовые рынки. Временные ряды финансовых показателей. Особенности сбора, обработки и анализа исходной информации. Ее источники. Аг

В прогнозировании социально-экономических процессов
Примеры моделей. Построение прогнозной процедуры и проблема верификации прогноза. Оценка точности прогноза. Доверительный интервал прогноза. Интерпретация параметров модели. Методы оценки доверител

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги