рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Закон сохранения момента импульса

Закон сохранения момента импульса - раздел Экономика, Кинематика материальной точки По Аналогии С Моментом Силы, Моментом Импульса Материальной Точки (Час...

По аналогии с моментом силы, моментом импульса материальной точки (частицы) относительно точки 0 называется векторная величина

L=[rp]=[r,mv], (7.8)

где r – радиус-вектор, определяющий положение частицы относительно точки 0, а р=mv – импульс частицы. Модуль этой величины, равный r p sina, можно представить в виде произведения плеча l импульса на модуль вектора р:

L=l p (7.9)

(рис. 7.4)

 
 

Частица обладает моментом импульса, независимо от формы траектории, по которой она движется. Рассмотрим два частных случая.

1. Частица движется вдоль прямолинейной траектории (рис.7.5). Модуль момента импульса

L=mvl (7.10)

может изменяться только за счет изменения модуля скорости.

2. Частица движется по окружности радиуса r (рис. 7.6). Модуль момента импульса относительно центра окружности равен

L=mvr (7.11)

 
 

и так же, как в предыдущем случае, может изменяться только за счет модуля скорости. Несмотря на непрерывное изменение направления вектора р, направление вектора L остается постоянным.

Проекция вектора L на произвольную ось z, проходящую через точку 0, называется моментом импульса частицы относительно этой оси:

Lz=[rp]пр.z, (7.12)

Выясним, от чего зависит изменение момента импульса частицы. С этой целью продифференцируем выражение (7.8) по времени:

Согласно второму закону Ньютона m=F – результирующей сил, действующих на частицу; по определению =v. Поэтому можно написать, что

Второе слагаемое является векторным произведением коллинеарных векторов и поэтому равно нулю. Первое слагаемое представляет собой момент силы F относительно той же точки, относительно которой взят момент импульса L. Следовательно, мы приходим к соотношению

(7.13)

согласно которому скорость изменения момента импульса со временем равна суммарному моменту сил, действующих на частицу.

Спроектировав векторы, фигурирующие в уравнении (7.13), на произвольную ось z, проходящую через точку 0, получим соотношение

. (7.14)

Таким образом, производная по времени от момента импульса относительно оси равна моменту относительно той же оси сил, действующих на частицу.

Рассмотрим систему частиц, на которые действуют как внутренние, так и внешние силы. Моментом импульса L системы относительно точки 0 называется сумма моментов импульса Li отдельных частиц:

L== (7.15)

Дифференцирование по времени дает, что

(7.16)

В соответствии с (7.13) для каждой из частиц можно написать равенство

где Мi внутр- момент внутренних сил, Мi внеш- момент внешних сил, действующих на

i-ю частицу. Подстановка этих равенств в (7.16) приводит к соотношению

Каждое из слагаемых в этих суммах представляет собой сумму моментов сил, действующих на i-ю частицу. Суммирование осуществляется по частицам. Если перейти к суммированию по отдельным силам, независимо от того, к какой из частиц они приложены, индекс i в суммах можно опустить.

Суммарный момент внутренних сил равен нулю. Поэтому получаем окончательно, что

(7.17

Спроектировав векторы, фигурирующие в формуле (7.17) на произвольную ось z, проходящую через точку 0, придем к уравнению

(7.18)

Если система замкнута (т.е. внешних сил нет), правая часть равенства (7.17) равна нулю и, следовательно, вектор L не изменяется со временем. Отсюда вытекает закон сохранения момента импульса, который гласит, что момент импульса замкнутой системы материальных точек остается постоянным. Разумеется, будет оставаться постоянным и момент импульса замкнутой системы относительно любой оси, проходящей через точку 0.

Момент импульса сохраняется и для незамкнутой системы, если сумма моментов внешних сил равна нулю. Согласно (7.18) сохраняется момент импульса системы относительно оси z при условии, что сумма моментов внешних сил относительно этой оси равна нулю.

В основе закона сохранения момента импульса лежит изотропия пространства, т.е. одинаковость свойств пространства по всем направлениям. Поворот замкнутой системы частиц без изменения их взаимного расположения (конфигурации) и относительных скоростей не изменяет механических свойств системы. Движение частиц друг относительно друга после поворота будет таким же, каким оно было бы, если бы поворот не был осуществлен.

 
 

Плоское движение твердого тела

Плоским называется такое движение, при котором все точки тела движутся в параллельных плоскостях. Произвольное плоское движение можно представить как совокупность поступательного движения и вращения (рис. 7.7). Разбиение движения на поступательное и вращательное можно осуществить множеством способов (на рис. 7.7 показаны три из них), отличающихся значениями скорости поступательного движения, но соответствующих одной и той же угловой скорости w. Поэтому можно говорить об угловой скорости вращения твердого тела, не указывая, через какую точку проходит ось вращения.

Положим скорость поступательного движения равной v0. Примем одну из точек, лежащих на оси вращения, за начало координат О. Согласно формуле

v=[wr]

составляющую скорости точек тела, обусловленную вращением, можно представить в виде [wr], где r – радиус-вектор, проведенный из точки О в данную точку тела. Следовательно, для скорости точек тела относительно неподвижной системы отсчета получается формула

v=v0+[wr] (7.19)

Особенно удобным оказывается разбиение произвольного плоского движения на поступательное, происходящее со скоростью центра масс vс, и вращение вокруг оси, проходящей через этот центр (рис. 7.7 б).

Элементарное перемещение твердого тела при плоском движении всегда можно представить как поворот вокруг так называемой мгновенной оси вращения (рис. 7.7 а). Эта ось может находиться внутри либо вне тела. Положение мгновенной оси относительно неподвижной системы отсчета и относительно тела, вообще говоря, изменяется со временем. В случае, изображенном на рис. 7.7, мгновенная ось совпадает с линией касания цилиндра с плоскостью (ось А). Эта ось перемещается как по плоскости (относительно системы отсчета), так и по поверхности цилиндра. Таким образом, плоское движение можно рассматривать как ряд последовательных элементарных вращений вокруг мгновенных осей.

 

– Конец работы –

Эта тема принадлежит разделу:

Кинематика материальной точки

Кинематика материальной точки Механическое движение Материальной точкой называют тело... Продифференцировав соотношение по времени получим...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Закон сохранения момента импульса

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение.
Движением в широком смысле слова называется всякое изменение вообще. Простейшей формой движения является механическое движение, которое заключается в изменении с течением времени положения тел или

СКОРОСТЬ
Рассмотрим движение частицы (т.е. материальной точки) по некоторой траектории. Если за равные, сколь угодно малые промежутки времени Dt частица проходит одинаковые пути Ds, движение части

Сравнение выражений (1.9) и (1.10) приводит к соотношениям
(1.11) Таким обра

В математике выражение вида
s=, (1.16) составленное для значений х, заключенных в пределах от а до b, называют определенным интегралом от функции f(x), взятым

УСКОРЕНИЕ
Чтобы охарактеризовать изменение скорости частицы со временем, используется величина а=limDt®0

Сопоставление этого выражения с (1.25) дает, что
, , . (1.26) Таки

Поступательное движение твердого тела
    Поступательным н

Инерциальные системы отсчета. Закон инерции.
Мы уже отмечали, что относительно разных систем отсчета движение имеет неодинаковый характер. Например, относительно вагона точка на ободе колеса движется по окружности, в то время как относительно

Сила и масса.
Для того чтобы сформулировать второй закон Ньютона, нужны понятия силы и массы. Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой ве

Второй закон Ньютона
Второй закон Ньютона утверждает, что скорость изменения импульса частицы равна действующей на частицу силе F:

Единицы и размерности физических величин.
Измерить какую-либо величину означает найти ее отношение к величине такого же вида, принятой за единицу. Для каждой физической величины можно было бы установить единицу произвольно, незави

Сила тяжести и вес
Вблизи поверхности Земли все тела падают с одинаковым ускорением, которое называют ускорением свободного падения и обозначают буквой g.Отсюда вытекает, что в системе отсчета

Упругие силы.
    Под действием внешних сил возникают дефо

Силы трения.
Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения) или при попытках вызвать такое перемещение

Сохраняющиеся величины.
Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии

Энергия и работа.
Понятия энергии и работы широко используются в повседневной жизни. Эти понятия тесно связаны друг с другом. Например, говорят об энергичном или работоспособном человеке. Само слово «энергия» происх

Кинетическая энергия и работа.
Рассмотрим простейшую систему, состоящую из одной материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна F. Напишем уравнение движения час

Точки во внешнем силовом поле
Сопоставим каждой точке поля консервативных сил значение некоторой функции координат Ер(x,y,z), которую определим следующим образом. Произвольно выбранной точке О припишем значени

Потенциальная энергия взаимодействия
Рассмотрим систему, состоящую из двух взаимодействующих частиц. Силы, с которыми частицы действуют друг на друга, будем предполагать направленными вдоль проходящей через обе частицы прямой и завися

В случае гравитационного притяжения частиц
F(r)=G Получим A12=-=-Gm1m2

Нетрудно убедится в том, что в этом случае
Ер= Можно показать, что взаимная потенциальная энергия системы, состоящей из N частиц, силы взаимодействия между которым

Где определяется формулой (3.30).
Работа внутренних сил равна убыли взаимной потенциальной энергии частиц: А12,внутр= Где

Вращение твердого тела вокруг неподвижной оси
Разобъем тело, вращающееся вокруг неподвижной оси с угловой скоростью w, на элементарные массы Dmi (рис.8.1). Момент импульса i – й элементарной массы относител

С учетом dm=rdV, получим формулу
I= (8.10) где r - плотность тела в точке, в которой взят объем dV, R – расстояние этого объема от оси, относительно которой вычисля

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Малые колебания
Рассмотрим механическую систему, положение которой может быть задано с помощью одной величины, которую мы обозначим х. В таких случаях говорят, что система имеет одну степень свободы. Величиной х,

Введя обозначения
(10.6) преобразуем уравнение (10.5) следующим образом (10.7)

Применив обозначения
2b=r/m, =k/m (10.15) перепишем уравнение (10.14) следующим образом:

Маятник
В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать математический и физический маятники. Мат

Распространение волн в упругой среде
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среде возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от

Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t: x=x(x, y, z; t) (11.3) (имеются в виду координаты р

Волновое уравнение
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и вр

Стоячие волны
Если в среде распространяются одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги