рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Где определяется формулой (3.30).

Где определяется формулой (3.30). - раздел Экономика, Кинематика материальной точки Работа Внутренних Сил Равна Убыли Взаимной Потенциальной Энергии Частиц: ...

Работа внутренних сил равна убыли взаимной потенциальной энергии частиц:

А12,внутр=

Где определяется формулой (6.7).

Работу неконсервативных сил обозначим посредством .

Согласно формуле (3.17) суммарная работа всех сил затрачивается на приращение кинетической энергии системы Ек, которая равна сумме кинетических энергий частиц:

Ек=. (6.9)

Следовательно,

()+()+к2к1.

Сгруппируем члены этого соотношения следующим образом:

.

Сумма кинетической и потенциальной энергий представляет собой полную механическую энергию системы Е:

Е=Ек+ (6.10)

Таким образом, мы установили, что работа неконсервативных сил равна приращению полной энергии системы:

Е21= (6.11)

Из (6.11) следует, что в случае, когда неконсервативные силы отсутствуют, полная механическая энергия системы остается постоянной:

Е=Ек+=const. (6.12)

Мы пришли к закону сохранения механической энергии, который гласит, что полная механическая энергия системы материальных точек, находящихся под действием только консервативных сил, остается постоянной.

Если система замкнута и силы взаимодействия между частицами консервативны, то полная энергия содержит лишь два слагаемых: Е=Ек+(- взаимная потенциальная энергия частиц). В этом случае закон сохранения механической энергии заключается в утверждении, что полная механическая энергия замкнутой системы материальных точек, между которыми действуют только консервативные силы, остается постоянной.

В основе закона сохранения энергии лежит однородность времени, т.е. равнозначность всех моментов времени, заключающееся в том, что замена момента времени t1 моментом времени t2 без изменения значений координат и скоростей тел не изменяет механических свойств системы. Поведение системы, начиная с времени t2 будет таким же, каким оно было бы, начиная с момента t1.

При наличии неконсервативных сил полная механическая энергия системы не сохраняется. Неконсервативными, в частности, являются силы трения и силы сопротивления среды. Работа этих сил, как правило, отрицательна. Поэтому при наличии сил трения и сил сопротивления среды полная механическая энергия системы уменьшается, переходя во внутреннюю энергию тел, что приводит к их нагреванию. Такой процесс называется диссипацией энергии (латинское слово «диссипация» означает «рассеяние»). Силы, приводящие к диссипации энергии, называются диссипативными. Отметим, что неконсервативные силы не обязательно являются диссипативными.

Закон сохранения энергии имеет всеобщий характер. Он применим ко всем без исключения процессам, происходящим в природе. Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую. Этот факт является проявлением неуничтожимости материи и ее движения.

Соударения тел

При соударении тела в большей либо меньшей мере деформируются. При этом кинетическая энергия тел частично или полностью переходит в потенциальную энергию упругой деформации и во внутреннюю энергию тел. Увеличение внутренней энергии приводит к нагреванию тел.

Рассмотрим два предельных вида соударения – абсолютно неупругий и абсолютно упругий удар. Абсолютно неупругим называется удар, при котором потенциальная энергия упругой деформации не возникает; кинетическая энергия тел частично или полностью превращается во внутреннюю энергию; после удара тела движутся с одинаковой скоростью (т.е. как одно тело) либо покоятся. При таком ударе выполняется только закон сохранения импульса, закон же сохранения механической энергии не соблюдается – механическая энергия частично или полностью переходит во внутреннюю.

Абсолютно упругим называется такой удар, при котором полная механическая энергия тел сохраняется. Сначала кинетическая энергия частично или полностью переходит в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую и тела разлетаются со скоростями, определяемыми двумя условиями – сохранением суммарной энергии и суммарного импульса тел.

 
 

Мы ограничимся рассмотрением центрального удара двух однородных шаров. Удар называется центральным, если шары до удара движутся вдоль прямой, проходящей через их центры (рис.6.2). Из соображений симметрии ясно, что после удара шары будут двигаться вдоль той же прямой. Будем предполагать, что шары движутся поступательно (т.е. не вращаясь). Будем также предполагать, что шары образуют замкнутую систему либо что внешние силы, приложенные к шарам, уравновешивают друг друга.

Обозначим массы шаров m1 и m2, скорости шаров до удара v1 и v2, скорости после удара u1 и u2.

Начнем с абсолютно неупругого удара. Закон сохранения импульса требует, чтобы суммарный импульс шаров после удара был таким же, как до удара. Поэтому

m1v1+m2v2=(m1m2)u

где u – одинаковая скорость шаров после удара. Отсюда

u= (6.13)

Для числовых расчетов нужно спроектировать все векторы на ось х (рис. 6.2).

Теперь рассмотрим абсолютно упругий удар. Напишем уравнение сохранения импульса и энергии:

m1v1+m2v2=m1u1+m2u2,

.

Преобразуем эти уравнения следующим образом:

m1(v1-v2)=m2(u2-v2) (6.14)

[m1(v1-u1)](v1+u1)=[m2(u2-v2)](u2+v2) (6.15)

Все векторы, входящие в уравнения (6.14) и (6.15), коллинеарны. Для коллинеарных векторов из А=В и АС=ВD следует, что С=D. Поэтому можно написать, что

v1+u1=u2+v2 (6.16)

Умножив (3.56) на m2 и вычтя результат из (6.14), а затем умножив (6.16) на m1 и сложив результат с (6.14), найдем скорости шаров после удара:

u1= u2= (6.17)

Заметим, что выражение для u2 отличается от выражения для u1 только перестановкой индексов 1 и 2. Это естественно, поскольку шары в процессе соударения совершенно равноправны и безразлично, какой из них считать первым, а какой вторым.

Чтобы осуществить расчеты, нужно спроектировать все векторы на ось х. Сделаем это, например, для случая а на рис. 6.2. В этом случае проекция вектора v1 равна модулю вектора, взятому со знаком плюс: v=v1, а проекция вектора v2 – модулю, взятому со знаком минус: v2x=-v2. Поэтому

u1= u2= (6.18)

Пусть m1=1 кг, m2=2 кг, v1=1 м/с. v2=3 м/с. Подстановка этих чисел в формулы (6.18) дает значения: u=-(13/3) м/с, u=-(1/3) м/с. Обе проекции оказались отрицательными. Это означает, что после соударения оба шара движутся влево. Следовательно, первый шар изменил направление движения на обратное, второй же шар после удара движется в первоначальном направлении, изменился лишь модуль его скорости (с 3 до (1/3) м/с).

Особый интерес представляет случай, когда массы шаров одинаковы: m1=m2. При этом условии из (6.18) получается, что

u1=v2, u2=v1.

Следовательно, шары равной массы при центральном ударе обмениваются скоростями. В частности, если один из шаров до соударения покоился, то после удара он движется с такой же скоростью, какую имел первоначально другой шар, который после удара оказывается неподвижным. При центральном абсолютно упругом ударе шар полностью передает свою скорость неподвижному шару той же массы.

 

– Конец работы –

Эта тема принадлежит разделу:

Кинематика материальной точки

Кинематика материальной точки Механическое движение Материальной точкой называют тело... Продифференцировав соотношение по времени получим...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Где определяется формулой (3.30).

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение.
Движением в широком смысле слова называется всякое изменение вообще. Простейшей формой движения является механическое движение, которое заключается в изменении с течением времени положения тел или

СКОРОСТЬ
Рассмотрим движение частицы (т.е. материальной точки) по некоторой траектории. Если за равные, сколь угодно малые промежутки времени Dt частица проходит одинаковые пути Ds, движение части

Сравнение выражений (1.9) и (1.10) приводит к соотношениям
(1.11) Таким обра

В математике выражение вида
s=, (1.16) составленное для значений х, заключенных в пределах от а до b, называют определенным интегралом от функции f(x), взятым

УСКОРЕНИЕ
Чтобы охарактеризовать изменение скорости частицы со временем, используется величина а=limDt®0

Сопоставление этого выражения с (1.25) дает, что
, , . (1.26) Таки

Поступательное движение твердого тела
    Поступательным н

Инерциальные системы отсчета. Закон инерции.
Мы уже отмечали, что относительно разных систем отсчета движение имеет неодинаковый характер. Например, относительно вагона точка на ободе колеса движется по окружности, в то время как относительно

Сила и масса.
Для того чтобы сформулировать второй закон Ньютона, нужны понятия силы и массы. Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой ве

Второй закон Ньютона
Второй закон Ньютона утверждает, что скорость изменения импульса частицы равна действующей на частицу силе F:

Единицы и размерности физических величин.
Измерить какую-либо величину означает найти ее отношение к величине такого же вида, принятой за единицу. Для каждой физической величины можно было бы установить единицу произвольно, незави

Сила тяжести и вес
Вблизи поверхности Земли все тела падают с одинаковым ускорением, которое называют ускорением свободного падения и обозначают буквой g.Отсюда вытекает, что в системе отсчета

Упругие силы.
    Под действием внешних сил возникают дефо

Силы трения.
Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения) или при попытках вызвать такое перемещение

Сохраняющиеся величины.
Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии

Энергия и работа.
Понятия энергии и работы широко используются в повседневной жизни. Эти понятия тесно связаны друг с другом. Например, говорят об энергичном или работоспособном человеке. Само слово «энергия» происх

Кинетическая энергия и работа.
Рассмотрим простейшую систему, состоящую из одной материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна F. Напишем уравнение движения час

Точки во внешнем силовом поле
Сопоставим каждой точке поля консервативных сил значение некоторой функции координат Ер(x,y,z), которую определим следующим образом. Произвольно выбранной точке О припишем значени

Потенциальная энергия взаимодействия
Рассмотрим систему, состоящую из двух взаимодействующих частиц. Силы, с которыми частицы действуют друг на друга, будем предполагать направленными вдоль проходящей через обе частицы прямой и завися

В случае гравитационного притяжения частиц
F(r)=G Получим A12=-=-Gm1m2

Нетрудно убедится в том, что в этом случае
Ер= Можно показать, что взаимная потенциальная энергия системы, состоящей из N частиц, силы взаимодействия между которым

Закон сохранения момента импульса
По аналогии с моментом силы, моментом импульса материальной точки (частицы) относительно точки 0 называется векторная величина L=[rp]=[r

Вращение твердого тела вокруг неподвижной оси
Разобъем тело, вращающееся вокруг неподвижной оси с угловой скоростью w, на элементарные массы Dmi (рис.8.1). Момент импульса i – й элементарной массы относител

С учетом dm=rdV, получим формулу
I= (8.10) где r - плотность тела в точке, в которой взят объем dV, R – расстояние этого объема от оси, относительно которой вычисля

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Малые колебания
Рассмотрим механическую систему, положение которой может быть задано с помощью одной величины, которую мы обозначим х. В таких случаях говорят, что система имеет одну степень свободы. Величиной х,

Введя обозначения
(10.6) преобразуем уравнение (10.5) следующим образом (10.7)

Применив обозначения
2b=r/m, =k/m (10.15) перепишем уравнение (10.14) следующим образом:

Маятник
В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать математический и физический маятники. Мат

Распространение волн в упругой среде
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среде возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от

Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t: x=x(x, y, z; t) (11.3) (имеются в виду координаты р

Волновое уравнение
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и вр

Стоячие волны
Если в среде распространяются одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги