рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Потенциальная энергия взаимодействия

Потенциальная энергия взаимодействия - раздел Экономика, Кинематика материальной точки Рассмотрим Систему, Состоящую Из Двух Взаимодействующих Частиц. Силы, С Котор...

Рассмотрим систему, состоящую из двух взаимодействующих частиц. Силы, с которыми частицы действуют друг на друга, будем предполагать направленными вдоль проходящей через обе частицы прямой и зависящими только от расстояния между частицами. Отметим, что указанными свойствами обладают гравитационные и электрические кулоновские (т.е. подчиняющиеся закону Кулона) силы.

Найдем работу внутренних сил, совершаемую при перемещении первой частицы на dr1, а второй частицы на dr2 (напомним, что перемещение частицы ds равно приращению ее радиус-вектора dr). Из рис.6.1 вытекает, что эту работу можно представить в виде

dA=F12dr1+F21dr2=F12dr1+F21(dr1+dr12)=(F12+F21dr1+F21dr12

Согласно третьему закону Ньютона F12=-F21 , так что F12+F21=0. Поэтому выражение для работы внутренних сил упрощается следующим образом:

 
 

dA=F12dr12 (6.1)

Такая же работа была бы совершена, если бы первая частица была неподвижна и находилась в начале координат, а вторая частица получила перемещение dr12, равное приращению ее радиус-вектора r12 .Отсюда следует, что работу, совершаемую внутренними силами при движении обеих частиц, можно вычислять, считая одну из частиц неподвижной, а вторую движущейся в центральном поле сил, создаваемом первой частицей.

Ранее было выяснено, что центральные силы консервативны, вследствие чего их работу можно вычислять как убыль потенциальной энергии. В рассмотренном случае эта энергия обусловлена взаимодействием частиц, входящих в систему; поэтому ее называют потенциальной энергией взаимодействия или взаимной потенциальной энергией.

Когда первая частица неподвижна и находиться в начале координат, в выражении (6.1) можно опустить индексы и написать его в виде

dA=Fdr (6.2)

Здесь F – центральная сила, действующая на вторую частицу, r – радиус-вектор этой частицы.

Если частица притягивается к силовому центру, работа на произвольном пути от точки 1 до точки 2 равна убыли потенциальной энергии, т.е.

A12=-=Ep1-Ep2. (6.3)

– Конец работы –

Эта тема принадлежит разделу:

Кинематика материальной точки

Кинематика материальной точки Механическое движение Материальной точкой называют тело... Продифференцировав соотношение по времени получим...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Потенциальная энергия взаимодействия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение.
Движением в широком смысле слова называется всякое изменение вообще. Простейшей формой движения является механическое движение, которое заключается в изменении с течением времени положения тел или

СКОРОСТЬ
Рассмотрим движение частицы (т.е. материальной точки) по некоторой траектории. Если за равные, сколь угодно малые промежутки времени Dt частица проходит одинаковые пути Ds, движение части

Сравнение выражений (1.9) и (1.10) приводит к соотношениям
(1.11) Таким обра

В математике выражение вида
s=, (1.16) составленное для значений х, заключенных в пределах от а до b, называют определенным интегралом от функции f(x), взятым

УСКОРЕНИЕ
Чтобы охарактеризовать изменение скорости частицы со временем, используется величина а=limDt®0

Сопоставление этого выражения с (1.25) дает, что
, , . (1.26) Таки

Поступательное движение твердого тела
    Поступательным н

Инерциальные системы отсчета. Закон инерции.
Мы уже отмечали, что относительно разных систем отсчета движение имеет неодинаковый характер. Например, относительно вагона точка на ободе колеса движется по окружности, в то время как относительно

Сила и масса.
Для того чтобы сформулировать второй закон Ньютона, нужны понятия силы и массы. Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой ве

Второй закон Ньютона
Второй закон Ньютона утверждает, что скорость изменения импульса частицы равна действующей на частицу силе F:

Единицы и размерности физических величин.
Измерить какую-либо величину означает найти ее отношение к величине такого же вида, принятой за единицу. Для каждой физической величины можно было бы установить единицу произвольно, незави

Сила тяжести и вес
Вблизи поверхности Земли все тела падают с одинаковым ускорением, которое называют ускорением свободного падения и обозначают буквой g.Отсюда вытекает, что в системе отсчета

Упругие силы.
    Под действием внешних сил возникают дефо

Силы трения.
Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения) или при попытках вызвать такое перемещение

Сохраняющиеся величины.
Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии

Энергия и работа.
Понятия энергии и работы широко используются в повседневной жизни. Эти понятия тесно связаны друг с другом. Например, говорят об энергичном или работоспособном человеке. Само слово «энергия» происх

Кинетическая энергия и работа.
Рассмотрим простейшую систему, состоящую из одной материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна F. Напишем уравнение движения час

Точки во внешнем силовом поле
Сопоставим каждой точке поля консервативных сил значение некоторой функции координат Ер(x,y,z), которую определим следующим образом. Произвольно выбранной точке О припишем значени

В случае гравитационного притяжения частиц
F(r)=G Получим A12=-=-Gm1m2

Нетрудно убедится в том, что в этом случае
Ер= Можно показать, что взаимная потенциальная энергия системы, состоящей из N частиц, силы взаимодействия между которым

Где определяется формулой (3.30).
Работа внутренних сил равна убыли взаимной потенциальной энергии частиц: А12,внутр= Где

Закон сохранения момента импульса
По аналогии с моментом силы, моментом импульса материальной точки (частицы) относительно точки 0 называется векторная величина L=[rp]=[r

Вращение твердого тела вокруг неподвижной оси
Разобъем тело, вращающееся вокруг неподвижной оси с угловой скоростью w, на элементарные массы Dmi (рис.8.1). Момент импульса i – й элементарной массы относител

С учетом dm=rdV, получим формулу
I= (8.10) где r - плотность тела в точке, в которой взят объем dV, R – расстояние этого объема от оси, относительно которой вычисля

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Малые колебания
Рассмотрим механическую систему, положение которой может быть задано с помощью одной величины, которую мы обозначим х. В таких случаях говорят, что система имеет одну степень свободы. Величиной х,

Введя обозначения
(10.6) преобразуем уравнение (10.5) следующим образом (10.7)

Применив обозначения
2b=r/m, =k/m (10.15) перепишем уравнение (10.14) следующим образом:

Маятник
В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать математический и физический маятники. Мат

Распространение волн в упругой среде
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среде возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от

Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t: x=x(x, y, z; t) (11.3) (имеются в виду координаты р

Волновое уравнение
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и вр

Стоячие волны
Если в среде распространяются одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги