Сравнение выражений (1.9) и (1.10) приводит к соотношениям
Сравнение выражений (1.9) и (1.10) приводит к соотношениям - раздел Экономика, Кинематика материальной точки ...
(1.11)
Таким образом, компоненты скорости равны производным соответствующих координат по времени.
Зная модуль скорости в каждый момент времени, можно вычислить путь, пройденный частицей от момента времени t1 до момента t2. Разобъем интервал времени t2-t1 на N малых (не обязательно одинаковых) промежутков Dti(i- номер промежутка, который пробегает значения 1, 2, 3,….N). В соответствии с формулой (1.7) можно считать, что путь Dsi, пройденный частицей за время Dti, приближенно равен произведению vi на Dti:
Dsi»viDti (1.12)
(здесь vi-какое-либо значение скорости из промежутка Dti). Весь путь s, пройденный частицей, равен сумме путей Dsi:
s=Ds1+Ds2+…+DsN=. (1.13)
(мы воспользовались сокращенной записью суммы). Заменив в (1.14) Dsi его приближенным значением (1.12), получим
s». (1.14)
Если уменьшать промежутки времени Dti, произведения viDti с возрастающей точностью будут определять пройденные за эти промежутки пути Dsi. Поэтому, сделав предельный переход, при котором все Dti стремятся к нулю (N при этом неограниченно возрастает) мы получим точное значение пути:
Механическое движение.
Движением в широком смысле слова называется всякое изменение вообще. Простейшей формой движения является механическое движение, которое заключается в изменении с течением времени положения тел или
СКОРОСТЬ
Рассмотрим движение частицы (т.е. материальной точки) по некоторой траектории. Если за равные, сколь угодно малые промежутки времени Dt частица проходит одинаковые пути Ds, движение части
В математике выражение вида
s=, (1.16)
составленное для значений х, заключенных в пределах от а до b, называют определенным интегралом от функции f(x), взятым
УСКОРЕНИЕ
Чтобы охарактеризовать изменение скорости частицы со временем, используется величина
а=limDt®0
Инерциальные системы отсчета. Закон инерции.
Мы уже отмечали, что относительно разных систем отсчета движение имеет неодинаковый характер. Например, относительно вагона точка на ободе колеса движется по окружности, в то время как относительно
Сила и масса.
Для того чтобы сформулировать второй закон Ньютона, нужны понятия силы и массы. Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой ве
Второй закон Ньютона
Второй закон Ньютона утверждает, что скорость изменения импульса частицы равна действующей на частицу силе F:
Единицы и размерности физических величин.
Измерить какую-либо величину означает найти ее отношение к величине такого же вида, принятой за единицу.
Для каждой физической величины можно было бы установить единицу произвольно, незави
Сила тяжести и вес
Вблизи поверхности Земли все тела падают с одинаковым ускорением, которое называют ускорением свободного падения и обозначают буквой g.Отсюда вытекает, что в системе отсчета
Упругие силы.
Под действием внешних сил возникают дефо
Силы трения.
Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения) или при попытках вызвать такое перемещение
Сохраняющиеся величины.
Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии
Энергия и работа.
Понятия энергии и работы широко используются в повседневной жизни. Эти понятия тесно связаны друг с другом. Например, говорят об энергичном или работоспособном человеке. Само слово «энергия» происх
Кинетическая энергия и работа.
Рассмотрим простейшую систему, состоящую из одной материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна F. Напишем уравнение движения час
Точки во внешнем силовом поле
Сопоставим каждой точке поля консервативных сил значение некоторой функции координат Ер(x,y,z), которую определим следующим образом. Произвольно выбранной точке О припишем значени
Потенциальная энергия взаимодействия
Рассмотрим систему, состоящую из двух взаимодействующих частиц. Силы, с которыми частицы действуют друг на друга, будем предполагать направленными вдоль проходящей через обе частицы прямой и завися
Закон сохранения момента импульса
По аналогии с моментом силы, моментом импульса материальной точки (частицы) относительно точки 0 называется векторная величина
L=[rp]=[r
Вращение твердого тела вокруг неподвижной оси
Разобъем тело, вращающееся вокруг неподвижной оси с угловой скоростью w, на элементарные массы Dmi (рис.8.1).
Момент импульса i – й элементарной массы относител
С учетом dm=rdV, получим формулу
I= (8.10)
где r - плотность тела в точке, в которой взят объем dV, R – расстояние этого объема от оси, относительно которой вычисля
Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR
Возведение в квадрат дает
(DЕк)i=
Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т
Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR
Возведение в квадрат дает
(DЕк)i=
Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т
Малые колебания
Рассмотрим механическую систему, положение которой может быть задано с помощью одной величины, которую мы обозначим х. В таких случаях говорят, что система имеет одну степень свободы. Величиной х,
Введя обозначения
(10.6)
преобразуем уравнение (10.5) следующим образом
(10.7)
Применив обозначения
2b=r/m, =k/m (10.15)
перепишем уравнение (10.14) следующим образом:
Маятник
В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать математический и физический маятники.
Мат
Распространение волн в упругой среде
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среде возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от
Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t:
x=x(x, y, z; t) (11.3)
(имеются в виду координаты р
Волновое уравнение
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и вр
Стоячие волны
Если в среде распространяются одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в о
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов