рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Распространение волн в упругой среде

Распространение волн в упругой среде - раздел Экономика, Кинематика материальной точки Если В Каком-Либо Месте Упругой (Твердой, Жидкой Или Газообразной) Среде Возб...

Если в каком-либо месте упругой (твердой, жидкой или газообразной) среде возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной.

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Упругие поперечные волны могут возникать лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

 
 

На рис.11.1 показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстояние, равное ¼ vT, т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица 1 начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По происшествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигает крайнего верхнего положения, а третья частица начнет смещаться верх из положения равновесия. В момент времени, равный Т, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как в начальный момент. Волна к моменту времени Т, пройдет путь vT, достигнет частицы 5.

На рис.11.1 показаны колебания частиц, положения равновесия которых лежат на оси х. В действительности колеблются не только частицы, расположенные вдоль оси х, а совокупность частиц, заключенных в некотором объеме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называются фронтом волны ( или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт в каждый момент только один. Волновые поверхности остаются неподвижными (они проходят через положения равновесия частиц, колеблющихся в одной фазе). Волновой фронт все время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.

Пусть плоская волна распространяется вдоль оси х. Тогда все точки среды, положения равновесия которых имеют одинаковую координату х (но различные значения координат y и z), колеблются в одинаковой фазе. На рис. 11.2 изображена кривая, которая дает смещение ξ из положения равновесия точек с различными х в некоторый момент времени. На рисунке показан график функции ξ(х, t) для некоторого фиксированного момента времени t. Такой график можно строить как для продольной, так и для поперечной волны.

Расстояние l, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что

l=vT, (11.1)

где v – скорость волны, Т – период колебаний. Длину волны можно определить как расстояние между ближайшими точками среды, колеблющимися с разностью фаз равной 2p (см.рис.11.2).

Заменив в соотношении (11.1) Т через 1/n (n - частота колебаний), получим

ln=v. (11.2)

– Конец работы –

Эта тема принадлежит разделу:

Кинематика материальной точки

Кинематика материальной точки Механическое движение Материальной точкой называют тело... Продифференцировав соотношение по времени получим...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Распространение волн в упругой среде

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение.
Движением в широком смысле слова называется всякое изменение вообще. Простейшей формой движения является механическое движение, которое заключается в изменении с течением времени положения тел или

СКОРОСТЬ
Рассмотрим движение частицы (т.е. материальной точки) по некоторой траектории. Если за равные, сколь угодно малые промежутки времени Dt частица проходит одинаковые пути Ds, движение части

Сравнение выражений (1.9) и (1.10) приводит к соотношениям
(1.11) Таким обра

В математике выражение вида
s=, (1.16) составленное для значений х, заключенных в пределах от а до b, называют определенным интегралом от функции f(x), взятым

УСКОРЕНИЕ
Чтобы охарактеризовать изменение скорости частицы со временем, используется величина а=limDt®0

Сопоставление этого выражения с (1.25) дает, что
, , . (1.26) Таки

Поступательное движение твердого тела
    Поступательным н

Инерциальные системы отсчета. Закон инерции.
Мы уже отмечали, что относительно разных систем отсчета движение имеет неодинаковый характер. Например, относительно вагона точка на ободе колеса движется по окружности, в то время как относительно

Сила и масса.
Для того чтобы сформулировать второй закон Ньютона, нужны понятия силы и массы. Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой ве

Второй закон Ньютона
Второй закон Ньютона утверждает, что скорость изменения импульса частицы равна действующей на частицу силе F:

Единицы и размерности физических величин.
Измерить какую-либо величину означает найти ее отношение к величине такого же вида, принятой за единицу. Для каждой физической величины можно было бы установить единицу произвольно, незави

Сила тяжести и вес
Вблизи поверхности Земли все тела падают с одинаковым ускорением, которое называют ускорением свободного падения и обозначают буквой g.Отсюда вытекает, что в системе отсчета

Упругие силы.
    Под действием внешних сил возникают дефо

Силы трения.
Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения) или при попытках вызвать такое перемещение

Сохраняющиеся величины.
Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии

Энергия и работа.
Понятия энергии и работы широко используются в повседневной жизни. Эти понятия тесно связаны друг с другом. Например, говорят об энергичном или работоспособном человеке. Само слово «энергия» происх

Кинетическая энергия и работа.
Рассмотрим простейшую систему, состоящую из одной материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна F. Напишем уравнение движения час

Точки во внешнем силовом поле
Сопоставим каждой точке поля консервативных сил значение некоторой функции координат Ер(x,y,z), которую определим следующим образом. Произвольно выбранной точке О припишем значени

Потенциальная энергия взаимодействия
Рассмотрим систему, состоящую из двух взаимодействующих частиц. Силы, с которыми частицы действуют друг на друга, будем предполагать направленными вдоль проходящей через обе частицы прямой и завися

В случае гравитационного притяжения частиц
F(r)=G Получим A12=-=-Gm1m2

Нетрудно убедится в том, что в этом случае
Ер= Можно показать, что взаимная потенциальная энергия системы, состоящей из N частиц, силы взаимодействия между которым

Где определяется формулой (3.30).
Работа внутренних сил равна убыли взаимной потенциальной энергии частиц: А12,внутр= Где

Закон сохранения момента импульса
По аналогии с моментом силы, моментом импульса материальной точки (частицы) относительно точки 0 называется векторная величина L=[rp]=[r

Вращение твердого тела вокруг неподвижной оси
Разобъем тело, вращающееся вокруг неподвижной оси с угловой скоростью w, на элементарные массы Dmi (рис.8.1). Момент импульса i – й элементарной массы относител

С учетом dm=rdV, получим формулу
I= (8.10) где r - плотность тела в точке, в которой взят объем dV, R – расстояние этого объема от оси, относительно которой вычисля

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Кинетическая энергия вращающегося тела
Когда тело вращается вокруг неподвижной оси с угловой скоростью w, элементарная масса Dmi, отстоящая от оси вращения на расстояние Ri, обладает скоростью vi=wR

Возведение в квадрат дает
(DЕк)i= Просуммировав (DЕк)i по всем элементарным массам, найдем кинетическую энергию т

Малые колебания
Рассмотрим механическую систему, положение которой может быть задано с помощью одной величины, которую мы обозначим х. В таких случаях говорят, что система имеет одну степень свободы. Величиной х,

Введя обозначения
(10.6) преобразуем уравнение (10.5) следующим образом (10.7)

Применив обозначения
2b=r/m, =k/m (10.15) перепишем уравнение (10.14) следующим образом:

Маятник
В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать математический и физический маятники. Мат

Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t: x=x(x, y, z; t) (11.3) (имеются в виду координаты р

Волновое уравнение
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и вр

Стоячие волны
Если в среде распространяются одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги